Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Cell Fact ; 23(1): 51, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355518

RESUMEN

BACKGROUND: In hematologic cancers, including leukemia, cells depend on amino acids for rapid growth. Anti-metabolites that prevent their synthesis or promote their degradation are considered potential cancer treatment agents. Amino acid deprivation triggers proliferation inhibition, autophagy, and programmed cell death. L-lysine, an essential amino acid, is required for tumor growth and has been investigated for its potential as a target for cancer treatment. L-lysine α-oxidase, a flavoenzyme that degrades L-lysine, has been studied for its ability to induce apoptosis and prevent cancer cell proliferation. In this study, we describe the use of L-lysine α-oxidase (LO) from the filamentous fungus Trichoderma harzianum for cancer treatment. RESULTS: The study identified and characterized a novel LO from T. harzianum and demonstrated that the recombinant protein (rLO) has potent and selective cytotoxic effects on leukemic cells by triggering the apoptotic cascade through mitochondrial dysfunction. CONCLUSIONS: The results support future translational studies using the recombinant LO as a potential drug for the treatment of leukemia.


Asunto(s)
Hypocreales , Leucemia , Neoplasias , Trichoderma , Humanos , Lisina , Apoptosis , Leucemia/tratamiento farmacológico , Necrosis
2.
Trop Med Infect Dis ; 8(8)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37624343

RESUMEN

Visceral leishmaniasis (VL) is a neglected disease considered a serious public health problem, especially in endemic countries. Several studies have discovered monoxenous trypanosomatids (Leptomonas and Crithidia) in patients with VL. In different situations of leishmaniasis, investigations have examined cases of co-infection between Leishmania spp. and Crithidia spp. These coinfections have been observed in a wide range of vertebrate hosts, indicating that they are not rare. Diagnostic techniques require improvements and more robust tools to accurately detect the causative agent of VL. This study aimed to develop a real-time quantitative dye-based PCR (qPCR) assay capable of distinguishing Leishmania infantum from Crithidia-related species and to estimate the parasite load in samples of VL from humans and animals. The primer LinJ31_2420 targets an exclusive phosphatase of L. infantum; the primer Catalase_LVH60-12060_1F targets the catalase gene of Crithidia. Therefore, primers were designed to detect L. infantum and Crithidia sp. LVH60A (a novel trypanosomatid isolated from VL patients in Brazil), in samples related to VL. These primers were considered species-specific, based on sequence analysis using genome data retrieved from the TriTryp database and the genome assembling of Crithidia sp. LVH60A strain, in addition to experimental and clinical data presented herein. This novel qPCR assay was highly accurate in identifying and quantifying L. infantum and Crithidia sp. LVH60A in samples obtained experimentally (in vitro and in vivo) or collected from hosts (humans, dogs, cats, and vectors). Importantly, the screening of 62 cultured isolates from VL patients using these primers surprisingly revealed that 51 parasite cultures were PCR+ for Crithidia sp. In addition, qPCR assays identified the co-infection of L. infantum with Crithidia sp. LVH60A in two new VL cases in Brazil, confirming the suspicion of co-infection in a previously reported case of fatal VL. We believe that the species-specific genes targeted in this study can be helpful for the molecular diagnosis of VL, as well as for elucidating suspected co-infections with monoxenous-like trypanosomatids, which is a neglected fact of a neglected disease.

3.
Int J Biol Macromol ; 182: 772-784, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33857516

RESUMEN

The 70 kDa heat shock proteins (Hsp70) are prone to self-assembly under thermal stress conditions, forming supramolecular assemblies (SMA), what may have detrimental consequences for cellular viability. In mitochondria, the cochaperone Hsp70-escort protein 1 (Hep1) maintains mitochondrial Hsp70 (mtHsp70) in a soluble and functional state, contributing to preserving proteostasis. Here we investigated the interaction between human Hep1 (hHep1) and HSPA9 (human mtHsp70) or HSPA1A (Hsp70-1A) in monomeric and thermic SMA states to unveil further information about the involved mechanisms. hHep1 was capable of blocking the formation of HSPA SMAs under a thermic treatment and stimulated HSPA ATPase activity in both monomeric and preformed SMA. The interaction of hHep1 with both monomeric and SMA HSPAs displayed a stoichiometric ratio close to 1, suggesting that hHep1 has access to most protomers within the SMA. Interestingly, hHep1 remodeled HSPA9 and HSPA1A SMAs into smaller forms. Furthermore, hHep1 was detected in the mitochondria and nucleus of cells transfected with the respective coding DNA and interacted with liposomes resembling mitochondrial membranes. Altogether, these new features reinforce that hHep1 act as a "chaperone for a chaperone", which may play a critical role in cellular proteostasis.


Asunto(s)
Núcleo Celular/metabolismo , Liposomas/metabolismo , Chaperonas Moleculares/metabolismo , Transporte Activo de Núcleo Celular , Línea Celular Tumoral , Proteínas HSP70 de Choque Térmico/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Unión Proteica , Multimerización de Proteína
4.
Photodiagnosis Photodyn Ther ; 34: 102256, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33737220

RESUMEN

BACKGROUND: Treatments based on production of reactive oxygen species for bladder cancer such as photodynamic therapy (PDT) have been marginalized due to low specificity and the existence of resistance mainly associated with the up-regulation of Heat Shock Proteins (HSPs). To overcome these barriers, the establishment of strategies combining PDTs with HSP inhibitors may be promising and the identification of HSPs involved with oxidative stress from bladder tumors in animal models represents a key step in this direction. MATERIALS: Thus, the present study aims to identify cytosolic and mitochondrial HSPs up expressed in murine bladder tumors and in the urothelial carcinoma cell line MB49 by qRT-PCR screening, and to analyze the importance of the activity of the HSPs associated with oxidative stress protection in the survival of the MB49 using strategy of inhibition in vitro. RESULTS: Results showed that both tumor tissues and MB49 cells in culture had significant overexpression of the mitochondrial HSPA9 (mortalin) and HSP60 mRNAs, while the cytosolic HSP90 was overexpressed only in the tumor. The effect of mortalin in the MB49 cells survival under oxidative stress was evaluated in vitro in presence of the specific inhibitor MKT-077 and H2O2. The findings showed that MB49 viability was permanently reduced by the MKT-077 in a dose-dependent manner by inducing apoptosis or necrosis, mainly under oxidative stress conditions. CONCLUSION: Results suggest that mortalin is preferentially expressed in the MB49 cancer model and plays a key role in tumoral survival, especially under oxidative stress, making this HSP a potential target for an alternative treatment combining PDT with HSP inhibitors.


Asunto(s)
Carcinoma de Células Transicionales , Fotoquimioterapia , Neoplasias de la Vejiga Urinaria , Animales , Proteínas HSP70 de Choque Térmico , Proteínas de Choque Térmico , Peróxido de Hidrógeno , Ratones , Estrés Oxidativo , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico
5.
Biochim Biophys Acta Gen Subj ; 1865(1): 129754, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33010352

RESUMEN

BACKGROUND: Ubiquitously eXpressed Transcript isoform 2 (UXTV2) is a prefoldin-like protein involved in NF-κB signaling, apoptosis, and the androgen and estrogen response. UXT-V2 is a cofactor in the NF-κB transcriptional enhanceosome, and its knockdown inhibits TNF-α -induced NF-κB activation. Fbxo7 is an F-box protein that interacts with SKP1, Cullin1 and RBX1 proteins to form an SCF(Fbxo7) E3 ubiquitin ligase complex. Fbxo7 negatively regulates NF-κB signaling through TRAF2 and cIAP1 ubiquitination. METHODS: We combine co-immunoprecipitation, ubiquitination in vitro and in vivo, cycloheximide chase assay, ubiquitin chain restriction analysis and microscopy to investigate interaction between Fbxo7 and overexpressed UXT-V2-HA. RESULTS: The Ubl domain of Fbxo7 contributes to interaction with UXTV2. This substrate is polyubiquitinated by SCF(Fbxo7) with K48 and K63 ubiquitin chain linkages in vitro and in vivo. This post-translational modification decreases UXT-V2 stability and promotes its proteasomal degradation. We further show that UXTV1, an alternatively spliced isoform of UXT, containing 12 additional amino acids at the N-terminus as compared to UXTV2, also interacts with and is ubiquitinated by Fbxo7. Moreover, FBXO7 knockdown promotes UXT-V2 accumulation, and the overexpression of Fbxo7-ΔF-box protects UXT-V2 from proteasomal degradation and enhances the responsiveness of NF-κB reporter. We find that UXT-V2 colocalizes with Fbxo7 in the cell nucleus. CONCLUSIONS: Together, our study reveals that SCF(Fbxo7) mediates the proteasomal degradation of UXT-V2 causing the inhibition of the NF-κB signaling pathway. GENERAL SIGNIFICANCE: Discovering new substrates of E3 ubiquitin-ligase SCF(Fbxo7) contributes to understand its function in different diseases such as cancer and Parkinson.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas F-Box/metabolismo , Chaperonas Moleculares/metabolismo , FN-kappa B/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Línea Celular Tumoral , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/metabolismo , Isoformas de Proteínas/metabolismo , Proteolisis , Ubiquitinación
6.
Sci Rep ; 10(1): 7063, 2020 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-32341436

RESUMEN

Tahiti lemon juice (Citrus latifolia) (TLJ), as a natural source of flavonoids, has been used as an alternative to anti-inflammatory drugs for the treatment of dysmenorrhea and menstrual excessive bleeding, often associated with an imbalance of the prostaglandins (PG) levels. However, despite the positive effects, the mechanisms that rule menstruation control are still unknown. Therefore, the objectives were to characterize the TLJ and analyze its effect on the production of PGF2α, PGE2 and pro-inflammatory cytokines involved inmenstruation. Flavonoids from TLJ were discriminated by UPLC-DAD-MS/MS (Qq-TOF) and the effects of TLJ were studied in vitro by quantification of the contraction of myoblasts in culture and PGF2α and PGE2 productions. Further, the systemic and menstrual fluid levels of PGF2α, PGE2, IL-1ß, TNF-α, IL-6, AK1B1 and AK1C3 enzymes produced by women during the menstrual period were compared after exposition or not to TLJ or meloxicam. The results showed that TLJ induces an increase in the contraction of myoblasts and the PGF2α supernatant level. Regarding in vivo analysis, a higher concentration of PGF2α and an unaltered PGE2 level was also found in the menstrual blood of women treated with TLJ, in contrast with a lower level of PGE2 and PGF2α observed in the meloxicam group. Concerning cytokines, only menstrual TNF-α levels decrease after treatment with TLJ or meloxicam. In conclusion, TLJ may favor the control of menstruation events via a PGF2α mediated muscle contractile response.


Asunto(s)
Citrus/química , Citocinas/metabolismo , Menstruación/efectos de los fármacos , Menstruación/metabolismo , Extractos Vegetales/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular , Cromatografía Líquida de Alta Presión , Dinoprost/metabolismo , Dinoprostona/metabolismo , Femenino , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Espectrometría de Masas , Ratones , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Extractos Vegetales/química , Factor de Necrosis Tumoral alfa/metabolismo
7.
Toxicol In Vitro ; 65: 104777, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31962201

RESUMEN

The serine/arginine protein kinases respond to the EGFR-PI3K-AKT signaling module in the context of pre-mRNA alternative splicing regulation. These enzymes (notably SRPK1 and SRPK2) have been found dysregulated in a variety of cancers, which suggests them as promising drug targets in oncology. SRPK2 has been related to leukemia cells proliferation and found preferentially overexpressed in T-cell acute lymphoblastic leukemia (T-ALL). Previously, synergistic combination between vincristine and SRPK inhibitors has been observed in leukemia cells in vitro. Herein we sought to evaluate the in vitro combinatory effects of inhibiting SRPK and multiple other kinase targets from the EGFR pathway in T-ALL, a hematological malignancy with a still poor prognosis. We found that the combined SRPK and AKT pharmacological inhibition is synergistic in Jurkat, CCRF-CEM, and TALL-1 (all T-ALL) but not in HL60, an acute myelogenous leukemia cell lineage. Combined treatments also impaired SR proteins phosphorylation in accordance with an improved suppression of SRPK activity. Furthermore, the synergism of treatments seemed associated with apoptosis triggering, as revealed by flow cytometry analyses. Taken together, these results suggest the therapeutic potential of the combined SRPK and AKT pharmacological inhibition against T-ALL.


Asunto(s)
Antineoplásicos/farmacología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Sinergismo Farmacológico , Receptores ErbB/metabolismo , Humanos , Ratones , Células 3T3 NIH , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Células Vero
8.
Biochem J ; 473(20): 3563-3580, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27503909

RESUMEN

Fbxo7 is a clinically relevant F-box protein, associated with both cancer and Parkinson's disease (PD). Additionally, SNPs within FBXO7 are correlated with alterations in red blood cell parameters. Point mutations within FBXO7 map within specific functional domains, including near its F-box domain and its substrate recruiting domains, suggesting that deficiencies in SCFFbxo7/PARK15 ubiquitin ligase activity are mechanistically linked to early-onset PD. To date, relatively few substrates of the ligase have been identified. These include HURP (hepatoma up-regulated protein), whose ubiquitination results in proteasome-mediated degradation, and c-IAP1 (inhibitor of apoptosis protein 1), TNF receptor-associated factor 2 (TRAF2), and NRAGE, which are not destabilized as a result of ubiquitination. None of these substrates have been linked directly to PD, nor has it been determined whether they would directly engage neuronal cell death pathways. To discover ubiquitinated substrates of SCFFbxo7 implicated more directly in PD aetiology, we conducted a high-throughput screen using protein arrays to identify new candidates. A total of 338 new targets were identified and from these we validated glycogen synthase kinase 3ß (Gsk3ß), which can phosphorylate α-synuclein, and translocase of outer mitochondrial membrane 20 (Tomm20), a mitochondrial translocase that, when ubiquitinated, promotes mitophagy, as SCFFbxo7 substrates both in vitro and in vivo Ubiquitin chain restriction analyses revealed that Fbxo7 modified Gsk3ß using K63 linkages. Our results indicate that Fbxo7 negatively regulates Gsk3ß activity, rather than its levels or localization. In addition, Fbxo7 ubiquitinated Tomm20, and its levels correlated with Fbxo7 expression, indicating a stabilizing effect. None of the PD-associated mutations in Fbxo7 impaired Tomm20 ubiquitination. Our findings demonstrate that SCFFbxo7 has an impact directly on two proteins implicated in pathological processes leading to PD.


Asunto(s)
Proteínas F-Box/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Enfermedad de Parkinson/enzimología , Enfermedad de Parkinson/metabolismo , Receptores de Superficie Celular/metabolismo , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proteínas F-Box/genética , Técnica del Anticuerpo Fluorescente , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Inmunoprecipitación , Proteínas Inhibidoras de la Apoptosis/genética , Proteínas Inhibidoras de la Apoptosis/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Enfermedad de Parkinson/genética , Mutación Puntual/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Superficie Celular/genética , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factor 2 Asociado a Receptor de TNF/genética , Factor 2 Asociado a Receptor de TNF/metabolismo , Ubiquitinación/genética , Ubiquitinación/fisiología
9.
Ann Vasc Surg ; 28(4): 1005-15, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440188

RESUMEN

BACKGROUND: The kallikrein-kinin system (KKS) has several direct and indirect effects on cells and cellular mediators involved in the inflammatory process. Studies about inflammation on percutaneous transluminal angioplasty with stent (PTA/stent) to treat peripheral arterial disease (PAD) in humans are scarce. The matrix metalloproteinases (MMPs) are calcium-dependent zinc-containing endopeptidases expressed in various cells and tissues such as fibroblasts, inflammatory cells, and, smooth muscle cells. Changes in the extracellular matrix (ECM) take place in the pathogenesis of many cardiovascular pathologies. MMPs and their inhibitors (tissue inhibitors of metalloproteinases [TIMPs]) are crucial in ECM remodeling in both physiologic and pathologic conditions. The aim of this study was to evaluate the role of the KKS and the MMP metabolism, which are important mediators that may contribute to tissue repair, in the process of arterial restenosis due to intimal hyperplasia in the femoropopliteal segment with the aim of developing new interventions. METHODS: Thirty-nine consecutive patients were selected (regardless of ethnic group, age, or sex) for revascularization, who underwent PTA/stent of the femoropopliteal segment. Twenty-five patients with the same clinical characteristics who were scheduled for diagnostic angiography but not subjected to PTA/nitinol stent were also selected. The concentrations in blood of total and kininogen fractions were evaluated using immunoenzymatic methods. Plasma kallikrein was evaluated by the colorimetric method. Tissue kallikrein was evaluated by the spectrophotometric method. The activity of kininase II was measured by fluorometric analysis. Quantification of MMPs was performed by zymography, which is an electrophoresis technique, and TIMPs were measured by enzyme-linked immunosorbent assay. RESULTS: Among the 31 patients who completed the survey, there were 10 cases of angiographically defined restenosis of >50%, and 21 cases without restenosis. There was an increase in the concentrations of the substrates (high-molecular-weight kininogens and lower molecular weight kininogens) and enzymes (plasma and tissue kallikrein) in patients with restenosis, indicating activation of this inflammatory pathway in these patients. The activity of kininase II was not significantly different between the groups of patients studied. There were no statistical differences between restenosis and no restenosis patients for both MMPs and TIMPs dosage, but there is an upward trend of MMPs in time 6 months in patients with restenosis. CONCLUSIONS: With the aim of identifying factors contributing to restenosis after endovascular intervention, this study showed evidence of high activation of the KKS in the pathologic inflammatory process of PTA/stent restenosis. In the other hand, it could not show participation of metalloproteinase metabolism in PTA/stent restenosis.


Asunto(s)
Angioplastia de Balón/instrumentación , Arteria Femoral , Calicreínas/sangre , Cininas/sangre , Metaloproteasas/sangre , Enfermedad Arterial Periférica/enzimología , Enfermedad Arterial Periférica/terapia , Arteria Poplítea , Stents , Inhibidores Tisulares de Metaloproteinasas/sangre , Anciano , Angioplastia de Balón/efectos adversos , Biomarcadores/sangre , Estudios de Casos y Controles , Constricción Patológica , Femenino , Arteria Femoral/diagnóstico por imagen , Humanos , Hiperplasia , Masculino , Persona de Mediana Edad , Neointima , Enfermedad Arterial Periférica/sangre , Enfermedad Arterial Periférica/diagnóstico , Arteria Poplítea/diagnóstico por imagen , Radiografía , Recurrencia , Factores de Tiempo
10.
Mol Biochem Parasitol ; 189(1-2): 14-25, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23611749

RESUMEN

PA28γ is a proteasome activator involved in the regulation of the cellular proliferation, differentiation and growth. In the present study, we identified and characterized a cDNA from Schistosoma mansoni exhibiting significant homology to PA28γ of diverse taxa ranging from mammals (including humans) to simple invertebrates. Designated SmPA28γ, this transcript has a 753bp predicted ORF encoding a protein of 250 amino acid residues. Alignment of SmPA28γ with multiple PA28γ orthologues revealed an average similarity of ~40% among the investigated organisms, and 90% similarity with PA28γ from Schistosoma japonicum. In addition, phylogenetic analysis demonstrated a close linkage between SmPA28γ to its sister group that contains well-characterized PA28γ sequences from Drosophila spp., as well as sharing the same branch with PA28γ from S. japonicum. Gene expression profiling of SmPA28γ using real-time quantitative PCR revealed elevated steady-state transcript levels in the eggs, miracidia and paired adult worms compared to other stages. In parallel with gene expression profiles, an affinity-purified anti-SmPA28γ antibody produced against recombinant protein exhibited strongest reactivity in Western blot analyses to endogenous SmPA28γ from miracidia, sporocysts and paired adult worms. Given its known regulatory function in other organisms, we hypothesized that the high level of SmPA28γ transcript and protein in these stages may be correlated with an important role of the PA28γ in the cellular growth and/or development of this parasite. To address this hypothesis, miracidia were transformed in vitro to sporocysts in the presence of SmPA28γ double-stranded RNAs (dsRNAs) and cultivated for 4 days, after which time steady-state transcript and protein levels, and phenotypic changes were evaluated. SmPA28γ dsRNA treatment resulted in gene and protein knockdown of ~60% and ~80%, respectively, which were correlated with a significant decrease in larval length compared to its controls. These findings are consistent with a putative role of SmPA28γ in larval growth/development of the S. mansoni.


Asunto(s)
Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Proteínas Musculares/genética , Complejo de la Endopetidasa Proteasomal/genética , Schistosoma mansoni/crecimiento & desarrollo , Schistosoma mansoni/genética , Secuencia de Aminoácidos , Animales , Análisis por Conglomerados , Perfilación de la Expresión Génica , Larva/genética , Larva/crecimiento & desarrollo , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Alineación de Secuencia , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...