Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Neuroinflammation ; 17(1): 266, 2020 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-32894170

RESUMEN

BACKGROUND: Experimental autoimmune encephalomyelitis (EAE) is the most commonly used and clinically relevant murine model for human multiple sclerosis (MS), a demyelinating autoimmune disease characterized by mononuclear cell infiltration into the central nervous system (CNS). The aim of the present study was to appraise the alterations, poorly documented in the literature, which may occur at the peripheral nervous system (PNS) level. METHODS: To this purpose, a multiple evaluation of peripheral nerve excitability was undertaken, by means of a minimally invasive electrophysiological method, in EAE mice immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide, an experimental model for MS that reproduces, in animals, the anatomical and behavioral alterations observed in humans with MS, including CNS inflammation, demyelination of neurons, and motor abnormalities. Additionally, the myelin sheath thickness of mouse sciatic nerves was evaluated using transmission electronic microscopy. RESULTS: As expected, the mean clinical score of mice, daily determined to describe the symptoms associated to the EAE progression, increased within about 18 days after immunization for EAE mice while it remained null for all control animals. The multiple evaluation of peripheral nerve excitability, performed in vivo 2 and 4 weeks after immunization, reveals that the main modifications of EAE mice, compared to control animals, are a decrease of the maximal compound action potential (CAP) amplitude and of the stimulation intensity necessary to generate a CAP with a 50% maximum amplitude. In addition, and in contrast to control mice, at least 2 CAPs were recorded following a single stimulation in EAE animals, reflecting various populations of sensory and motor nerve fibers having different CAP conduction speeds, as expected if a demyelinating process occurred in the PNS of these animals. In contrast, single CAPs were always recorded from the sensory and motor nerve fibers of control mice having more homogeneous CAP conduction speeds. Finally, the myelin sheath thickness of sciatic nerves of EAE mice was decreased 4 weeks after immunization when compared to control animals. CONCLUSIONS: In conclusion, the loss of immunological self-tolerance to MOG in EAE mice or in MS patients may not be only attributed to the restricted expression of this antigen in the immunologically privileged environment of the CNS but also of the PNS.


Asunto(s)
Potenciales de Acción/fisiología , Encefalomielitis Autoinmune Experimental/fisiopatología , Conducción Nerviosa/fisiología , Nervios Periféricos/fisiopatología , Animales , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Ratones , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Vaina de Mielina/inmunología , Vaina de Mielina/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Fragmentos de Péptidos/inmunología , Nervios Periféricos/inmunología , Nervios Periféricos/patología
2.
Front Immunol, v. 11, 591563, out. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3312

RESUMEN

Crotoxin (CTX), the main neurotoxin from Crotalus durissus terrificus snake venom, has anti-inflammatory, immunomodulatory and antinociceptive activities. However, the CTX-induced toxicity may compromise its use. Under this scenario, the use of nanoparticle such as nanostructured mesoporous silica (SBA-15) as a carrier might become a feasible approach to improve CTX safety. Here, we determined the benefits of SBA-15 on CTX-related neuroinflammatory and immunomodulatory properties during experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis that replicates several histopathological and immunological features observed in humans. We showed that a single administration of CTX:SBA-15 (54 μg/kg) was more effective in reducing pain and ameliorated the clinical score (motor impairment) in EAE animals compared to the CTX-treated EAE group; therefore, improving the disease outcome. Of interest, CTX:SBA-15, but not unconjugated CTX, prevented EAE-induced atrophy and loss of muscle function. Further supporting an immune mechanism, CTX:SBA-15 treatment reduced both recruitment and proliferation of peripheral Th17 cells as well as diminished IL-17 expression and glial cells activation in the spinal cord in EAE animals when compared with CTX-treated EAE group. Finally, CTX:SBA-15, but not unconjugated CTX, prevented the EAE-induced cell infiltration in the CNS. These results provide evidence that SBA-15 maximizes the immunomodulatory and anti-inflammatory effects of CTX in an EAE model; therefore, suggesting that SBA-15 has the potential to improve CTX effectiveness in the treatment of MS.

3.
J Neuroinflammation, v. 17, 266, set. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3187

RESUMEN

Background Experimental autoimmune encephalomyelitis (EAE) is the most commonly used and clinically relevant murine model for human multiple sclerosis (MS), a demyelinating autoimmune disease characterized by mononuclear cell infiltration into the central nervous system (CNS). The aim of the present study was to appraise the alterations, poorly documented in the literature, which may occur at the peripheral nervous system (PNS) level. Methods To this purpose, a multiple evaluation of peripheral nerve excitability was undertaken, by means of a minimally invasive electrophysiological method, in EAE mice immunized with the myelin oligodendrocyte glycoprotein (MOG) 35-55 peptide, an experimental model for MS that reproduces, in animals, the anatomical and behavioral alterations observed in humans with MS, including CNS inflammation, demyelination of neurons, and motor abnormalities. Additionally, the myelin sheath thickness of mouse sciatic nerves was evaluated using transmission electronic microscopy. Results As expected, the mean clinical score of mice, daily determined to describe the symptoms associated to the EAE progression, increased within about 18 days after immunization for EAE mice while it remained null for all control animals. The multiple evaluation of peripheral nerve excitability, performed in vivo 2 and 4 weeks after immunization, reveals that the main modifications of EAE mice, compared to control animals, are a decrease of the maximal compound action potential (CAP) amplitude and of the stimulation intensity necessary to generate a CAP with a 50% maximum amplitude. In addition, and in contrast to control mice, at least 2 CAPs were recorded following a single stimulation in EAE animals, reflecting various populations of sensory and motor nerve fibers having different CAP conduction speeds, as expected if a demyelinating process occurred in the PNS of these animals. In contrast, single CAPs were always recorded from the sensory and motor nerve fibers of control mice having more homogeneous CAP conduction speeds. Finally, the myelin sheath thickness of sciatic nerves of EAE mice was decreased 4 weeks after immunization when compared to control animals. Conclusions In conclusion, the loss of immunological self-tolerance to MOG in EAE mice or in MS patients may not be only attributed to the restricted expression of this antigen in the immunologically privileged environment of the CNS but also of the PNS.

4.
Brain Behav Immun, v. 84, p. 253-268, fev. 2020
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2982

RESUMEN

Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st–12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th–9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 µg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-?-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.

5.
Brain. Behav. Immun. ; 84: 253-268, 2020.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17554

RESUMEN

Multiple sclerosis (MS) is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory and motor functions, including chronic pain. To date, however, few studies have investigated the mechanisms of chronic pain in animal models of MS since locomotor impairments render difficult its evaluation. It was previously demonstrated that in the MOG35-55-induced EAE, an animal model of MS, the hypernociception appears before the onset of motor disability, allowing for the study of these two phenomena separately. Here, we evaluated the effect of crotoxin (CTX), a neurotoxin isolated from the Crotalus durissus terrificus snake venom that displays, at non-toxic dose, antinociceptive, anti-inflammatory and immunomodulatory effects, in the pain and in symptoms progression of EAE. The pain threshold of female C57BL/6 mice decreased at the 4th day after immunization, while the first sign of disease appeared around the 11st–12nd days, coinciding with the onset of motor abnormalities. CTX (40 µg/kg, s.c.) administered in a single dose on the 5th day after immunization, induced a long-lasting analgesic effect (5 days), without interfering with the clinical signs of the disease. On the other hand, when crotoxin was administered for 5 consecutive days, from 5th–9th day after immunization, it induced analgesia and also reduced EAE progression. The antinociceptive effect of crotoxin was blocked by Boc-2 (0.5 mg/kg, i.p.), a selective antagonist of formyl peptide receptors, by NDGA (30 µg/kg, i.p.), a lipoxygenase inhibitor and by atropine sulfate (10 mg/kg, i.p.), an antagonist of muscarinic receptors, administered 30 min before CTX. CTX was also effective in decreasing EAE clinical signs even when administered after its onset. Regarding the interactions between neurons and immunocompetent cells, CTX, in vitro, was able to reduce T cell proliferation, decreasing Th1 and Th17 and increasing Treg cell differentiation. Furthermore, in EAE model, the treatment with 5 consecutive doses of CTX inhibited IFN-?-producing T cells, GM-CSF-producing T cells, reduced the frequency of activated microglia/macrophages within the CNS and decreased the number of migrating cell to spinal cord and cerebellum at the peak of the disease. These results suggest that CTX is a potential treatment not only for pain alteration but also for clinical progression induced by the disease as well as an useful tool for the development of new therapeutic approaches for the multiple sclerosis control.

6.
PLoS Negl Trop Dis ; 12(8): e0006700, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30080908

RESUMEN

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10-25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.


Asunto(s)
Venenos de Crotálidos/farmacología , Miembro Posterior , Músculo Esquelético/efectos de los fármacos , Parálisis , Canales de Potasio con Entrada de Voltaje/metabolismo , Canales de Sodio Activados por Voltaje/metabolismo , 4-Aminopiridina/administración & dosificación , 4-Aminopiridina/farmacología , Animales , Venenos de Crotálidos/administración & dosificación , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Dimensión del Dolor , Canales de Potasio con Entrada de Voltaje/antagonistas & inhibidores , Tetrodotoxina/administración & dosificación , Tetrodotoxina/farmacología , Bloqueadores del Canal de Sodio Activado por Voltaje/administración & dosificación , Bloqueadores del Canal de Sodio Activado por Voltaje/farmacología
7.
Plos Neglect Trop Dis, v. 12, n. 8, e0006700, ago. 2018
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2593

RESUMEN

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.

8.
Plos Neglect. Trop. Dis. ; 12(8): e0006700, 2018.
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15654

RESUMEN

The high medical importance of Crotalus snakes is unquestionable, as this genus is the second in frequency of ophidian accidents in many countries, including Brazil. With a relative less complex composition compared to other genera venoms, as those from the Bothrops genus, the Crotalus genus venom from South America is composed basically by the neurotoxin crotoxin (a phospholipase A2), the thrombin-like gyroxin (a serinoprotease), a very potent aggregating protein convulxin, and a myotoxic polypeptide named crotamine. Interestingly not all Crotalus snakes express crotamine, which was first described in early 50s due to its ability to immobilize animal hind limbs, contributing therefore to the physical immobilization of preys and representing an important advantage for the envenoming efficacy, and consequently, for the feeding and survival of these snakes in nature. Representing about 10–25% of the dry weight of the crude venom of crotamine-positive rattlesnakes, the polypeptide crotamine is also suggested to be of importance for antivenom therapy, although the contribution of this toxin to the main symptoms of envenoming process remains far unknown until now. Herein, we concomitantly performed in vitro and in vivo assays to show for the first time the dose-dependent response of crotamine-triggered hind limbs paralysis syndrome, up to now believed to be observable only at high (sub-lethal) concentrations of crotamine. In addition, ex vivo assay performed with isolated skeletal muscles allowed us to suggest here that compounds active on voltage-sensitive sodium and/or potassium ion channels could both affect the positive inotropic effect elicited by crotamine in isolated diaphragm, besides also affecting the hind limbs paralysis syndrome imposed by crotamine in vivo. By identifying the potential molecular targets of this toxin, our data may contribute to open new roads for translational studies aiming to improve the snakebite envenoming treatment in human. Interestingly, we also demonstrate that the intraplantal or intraperitoneal (ip) injections of crotamine in mice do not promote pain. Therefore, this work may also suggest the profitable utility of non-toxic analogs of crotamine as a potential tool for targeting voltage-gated ion channels in skeletal muscles, aiming its potential use in the therapy of neuromuscular dysfunctions and envenoming therapy.

9.
São Paulo; s.n; 2012. 83 p.
Tesis en Portugués | LILACS, Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP, SESSP-IBACERVO | ID: biblio-1080913

RESUMEN

A esclerose múltipla é uma doença inflamatória crônica, de origem autoimune, que acarreta diversas alterações motoras, cognitivas e sensitivas. Dentre as alterações sensitivas, a dor é um dos graves problemas que afetam pessoas portadoras desta doença, interferindo com diversos aspectos da vida do paciente. É importante ressaltar que a esclerose múltipla não tem cura, sendo que a terapêutica se concentra nas ações que retardam a progressão da doença e promovem o alívio dos sintomas, melhorando a qualidade da vida do paciente...


Multiple sclerosis is a Central Nervous System Inflamatory demyelinating disease that has as primary symptomps losses of sensory, cognitive and motor functions. Among the sensory alternations, pain is one of the major concern, afecting various aspects of the patients lives...


Asunto(s)
Femenino , Ratones , Crotalus/sangre , Crotoxina/administración & dosificación , Crotoxina/uso terapéutico , Esclerosis Múltiple/inducido químicamente , Venenos de Crotálidos/administración & dosificación , Venenos de Crotálidos/aislamiento & purificación , Venenos de Crotálidos/uso terapéutico , Encefalomielitis , Encefalomielitis Autoinmune Experimental/fisiopatología , Encefalomielitis Autoinmune Experimental/inducido químicamente , Dimensión del Dolor
10.
Master thesis. São Paulo: Instituto Butantan; 2012. 83 p.
Tesis en Portugués | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3321

RESUMEN

Multiple sclerosis is a Central Nervous System inflammatory demyelinating disease that has as primary symptoms losses of sensory, cognitive and motor functions. Among the sensory alterations, pain is one of the major concern, affecting various aspects of the patients lives. It is important to point out that MS has no cure, being the therapeutic approaches focused on stopping disease progression and cumulative neurological disability, promoting the relief of symptoms, improving the quality of life. Despite the importance of pain in multiple sclerosis, few experimental studies have been conducted in order to characterize the mechanisms involved in its genesis since locomotor impairments that accompany the disease difficult the response of the animals in experimental models of pain evaluation. Several animal models of Experimental Autoimmune Encephalomyelitis (EAE) have been developed, trying to reproduce, in animals, anatomical and behavioral changes observed in human multiple sclerosis. Recently, it was demonstrated that in MOG35- 55-induced EAE, an animal model of multiple sclerosis, hyperalgesia and allodynia, two phenomena of sensitization, appear before the onset of EAE symptoms, been considered "markers" of the same. Numerous studies in the literature have demonstrated the importance of compounds derived from animal poisons or toxins to treat a variety of human diseases. In this meaning, studies using crotoxin, a neurotoxin isolated from the venom of Crotalus durissus terrificus, demonstrated that this toxin is able to induce analgesic, antiinflammatory and immunomodulatory effects in different experimental models. Based on these information, the aim of this study is to evaluate the effect of crotoxin in the pain and in the onset and progression of clinical symptoms of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. Our results demonstrated that MOG35-55-induced hyperalgesia arises before the onset of clinical signs, confirming previous data from Literature. Crotoxin, administered in a single dose, induced potent and long-lasting antinociceptive effect. When administered in repeated doses, besides interfering with the phenomenon of hypernociception, crotoxin interferes with the development and severity of the disease, observed by a delay in the onset of clinical signs as well as a lower intensity of these signs. In relation to the chemical mediation, the antinociceptive effect of crotoxin involves the participation of formyl peptide receptors, through the release of lipoxin A4, and the participation of muscarinic receptors. Since multiple sclerosis has no cure, results herein obtained confirm the importance of this study as well as the possible therapeutic effects of crotoxin previously observed.


A esclerose múltipla é uma doença inflamatória crônica, de origem autoimune, que acarreta diversas alterações motoras, cognitivas e sensitivas. Dentre as alterações sensitivas, a dor é um dos graves problemas que afetam pessoas portadoras desta doença, interferindo com diversos aspectos da vida do paciente. É importante ressaltar que a esclerose múltipla não tem cura, sendo que a terapêutica se concentra nas ações que retardam a progressão da doença e promovem alívio dos sintomas, melhorando a qualidade de vida do paciente. Apesar da importância da dor nos quadros de esclerose múltipla, poucos estudos experimentais têm sido realizados objetivando caracterizar os mecanismos envolvidos na sua gênese. Este fato decorre da dificuldade de avaliação da nocicepção, uma vez que as alterações motoras que acompanham a doença dificultam e interferem com as respostas dos animais em modelos experimentais de avaliação da sensibilidade dolorosa. Diversos modelos animais de Encefalomielite Autoimune Experimental (EAE) têm sido desenvolvidos para tentar reproduzir, em animais, as alterações anatômicas e comportamentais observadas na esclerose múltipla em humanos. Foi demonstrado recentemente que, em modelo de EAE induzida por imunização com MOG35–55, a hiperalgesia e alodínia, dois fenômenos de sensibilização que integram a hipernocicepção, aparecem em tempos anteriores ao aparecimento dos sintomas da EAE, podendo ser considerados fenômenos “marcadores” da mesma. Numerosos trabalhos da literatura têm demonstrado a importância de compostos derivados de venenos ou toxinas animais no tratamento de uma grande variedade de doenças humanas. Nesse sentido, estudos realizados utilizando a crotoxina, uma neurotoxina isolada do veneno de serpentes Crotalus durissus terrificus, demonstraram seu efeito analgésico, antiinflamatório e imunomodulatório em diferentes modelos experimentais. Assim, o objetivo deste trabalho é avaliar o efeito da crotoxina, tanto na dor quanto na instalação e evolução do quadro clínico da Encefalomielite Autoimune Experimental, modelo animal da esclerose múltipla. Nossos resultados demonstram que a hiperalgesia neste modelo, surge antes dos primeiros sinais clínicos, corroborando com os dados da literatura. A administração de crotoxina, em dose única e não tóxica, acarreta potente e duradouro efeito antinociceptivo. Ainda, quando administrada em doses repetidas, esta toxina, além de interferir com o fenômeno de hipernocicepção, interfere com o desenvolvimento e a intensidade da doença, observados por um retardo no início do aparecimento dos sinais clínicos bem como por uma menor intensidade nestes sinais. Com relação à mediação química, observamos que o efeito antinociceptivo da crotoxina envolve a participação de receptores peptídeo formil, por ação da lipoxina A4, e ainda, a participação dos receptores muscarínicos. Uma vez que a esclerose múltipla não tem cura, os resultados obtidos até o momento ressaltam a importância deste estudo, bem como confirmam os possíveis efeitos terapêuticos observados anteriormente para a crotoxina.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...