Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36985945

RESUMEN

Late diagnosis and systemic toxicity associated with conventional treatments make oncological therapy significantly difficult. In this context, nanomedicine emerges as a new approach in the prevention, diagnosis and treatment of cancer. In this work, pH-sensitive solid magnetoliposomes (SMLs) were developed for controlled release of the chemotherapeutic drug doxorubicin (DOX). Shape anisotropic magnetic nanoparticles of magnesium ferrite with partial substitution by calcium (Mg0.75Ca0.25Fe2O4) were synthesized, with and without calcination, and their structural, morphological and magnetic properties were investigated. Their superparamagnetic properties were evaluated and heating capabilities proven, either by exposure to an alternating magnetic field (AMF) (magnetic hyperthermia) or by irradiation with near-infrared (NIR) light (photothermia). The Mg0.75Ca0.25Fe2O4 calcined nanoparticles were selected to integrate the SMLs, surrounded by a lipid bilayer of DOPE:Ch:CHEMS (45:45:10). DOX was encapsulated in the nanosystems with an efficiency above 98%. DOX release assays showed a much more efficient release of the drug at pH = 5 compared to the release kinetics at physiological pH. By subjecting tumor cells to DOX-loaded SMLs, cell viability was significantly reduced, confirming that they can release the encapsulated drug. These results point to the development of efficient pH-sensitive nanocarriers, suitable for a synergistic action in cancer therapy with magnetic targeting, stimulus-controlled drug delivery and dual hyperthermia (magnetic and plasmonic) therapy.

2.
Cancers (Basel) ; 14(4)2022 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-35205683

RESUMEN

The development of cancer models that rectify the simplicity of monolayer or static cell cultures physiologic microenvironment and, at the same time, replicate the human system more accurately than animal models has been a challenge in biomedical research. Organ-on-a-chip (OoC) devices are a solution that has been explored over the last decade. The combination of microfluidics and cell culture allows the design of a dynamic microenvironment suitable for the evaluation of treatments' efficacy and effects, closer to the response observed in patients. This systematic review sums the studies from the last decade, where OoC with cancer cell cultures were used for drug screening assays. The studies were selected from three databases and analyzed following the research guidelines for systematic reviews proposed by PRISMA. In the selected studies, several types of cancer cells were evaluated, and the majority of treatments tested were standard chemotherapeutic drugs. Some studies reported higher drug resistance of the cultures on the OoC devices than on 2D cultures, which indicates the better resemblance to in vivo conditions of the former. Several studies also included the replication of the microvasculature or the combination of different cell cultures. The presence of vasculature can influence positively or negatively the drug efficacy since it contributes to a greater diffusion of the drug and also oxygen and nutrients. Co-cultures with liver cells contributed to the evaluation of the systemic toxicity of some drugs metabolites. Nevertheless, few studies used patient cells for the drug screening assays.

3.
Sensors (Basel) ; 21(9)2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-34068811

RESUMEN

Three-dimensional (3D) in vitro models, such as organ-on-a-chip platforms, are an emerging and effective technology that allows the replication of the function of tissues and organs, bridging the gap amid the conventional models based on planar cell cultures or animals and the complex human system. Hence, they have been increasingly used for biomedical research, such as drug discovery and personalized healthcare. A promising strategy for their fabrication is 3D printing, a layer-by-layer fabrication process that allows the construction of complex 3D structures. In contrast, 3D bioprinting, an evolving biofabrication method, focuses on the accurate deposition of hydrogel bioinks loaded with cells to construct tissue-engineered structures. The purpose of the present work is to conduct a systematic review (SR) of the published literature, according to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses, providing a source of information on the evolution of organ-on-a-chip platforms obtained resorting to 3D printing and bioprinting techniques. In the literature search, PubMed, Scopus, and ScienceDirect databases were used, and two authors independently performed the search, study selection, and data extraction. The goal of this SR is to highlight the importance and advantages of using 3D printing techniques in obtaining organ-on-a-chip platforms, and also to identify potential gaps and future perspectives in this research field. Additionally, challenges in integrating sensors in organs-on-chip platforms are briefly investigated and discussed.


Asunto(s)
Bioimpresión , Dispositivos Laboratorio en un Chip , Animales , Humanos , Hidrogeles , Impresión Tridimensional , Ingeniería de Tejidos
4.
Comput Methods Biomech Biomed Engin ; 24(6): 623-636, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33225743

RESUMEN

Atherosclerosis is a progressive disease that can significantly reduce blood supply to vital organs, being one of the main causes of death worldwide. In this work, a numerical and experimental study in 3D printed stenotic coronary arteries, considering both steady and pulsatile blood flow conditions, is presented. The results revealed that a degree of stenosis superior to 50% creates disturbed flows downstream of the contraction, with an accented increase in the wall shear stress measurements at the stenosis throat. Finally, the multiphase mixture was investigated and compared with a single-phase modelling, and only slight differences were observed right after the stenosis throat.


Asunto(s)
Simulación por Computador , Estenosis Coronaria/fisiopatología , Vasos Coronarios/fisiopatología , Hemodinámica/fisiología , Modelos Cardiovasculares , Impresión Tridimensional , Velocidad del Flujo Sanguíneo/fisiología , Humanos , Análisis Numérico Asistido por Computador
5.
Work ; 51(3): 445-56, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24939121

RESUMEN

BACKGROUND: Studies concerning indoor thermal conditions are very important in defining the satisfactory comfort range in health care facilities. OBJECTIVE: This study focuses on the evaluation of the thermal comfort sensation felt by surgeons and nurses, in an orthopaedic surgical room of a Portuguese hospital. METHODS: Two cases are assessed, with and without the presence of a person. Computational fluid dynamic (CFD) tools were applied for evaluating the predicted mean vote (PMV) index locally. RESULTS: Using average ventilation values to calculate the PMV index does not provide a correct and enough descriptive evaluation of the surgical room thermal environment. As studied for both cases, surgeons feel the environment slightly hotter than nurses. The nurses feel a slightly cold sensation under the air supply diffuser and their neutral comfort zone is located in the air stagnation zones close to the walls, while the surgeons feel the opposite. It was observed that the presence of a person in the room leads to an increase of the PMV index for surgeons and nurses. That goes in line with the empirical knowledge that more persons in a room lead to an increased heat sensation. CONCLUSIONS: The clothing used by both classes, as well as the ventilation conditions, should be revised accordingly to the amount of persons in the room and the type of activity performed.


Asunto(s)
Quirófanos , Temperatura , Sensación Térmica , Humanos , Hidrodinámica , Personal de Hospital , Termografía , Ventilación
6.
Artículo en Inglés | MEDLINE | ID: mdl-21491261

RESUMEN

Asthma is a widespread disease, affecting more than 300 million individuals. The treatment in children is based upon an administration of a pressurised metered-dose inhaler added with a spacer. The efficiency of drug delivery to the patient is strongly affected by the transient airflow pattern inside the spacer device. This paper presents a computational fluid dynamics (CFD) analysis of airflow inside a commercially available spacer device with wide application. This study, carried out in Fluent™, was the basis of an optimisation procedure developed to improve the geometry of the spacer and develop a more efficient product. The results show that an appropriate control of the boundary layer development, by changing the spacer shape, reduces the length of the recirculation zones and improves the flow. It can be concluded that CFD is a powerful technique that can be successfully applied to optimise the geometry of such medical devices.


Asunto(s)
Antiasmáticos/administración & dosificación , Antiasmáticos/química , Diseño Asistido por Computadora , Espaciadores de Inhalación , Modelos Químicos , Reología/instrumentación , Reología/métodos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...