Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37066321

RESUMEN

Reversal learning measures the ability to form flexible associations between choice outcomes with stimuli and actions that precede them. This type of learning is thought to rely on several cortical and subcortical areas, including highly interconnected orbitofrontal cortex (OFC) and basolateral amygdala (BLA), and is often impaired in various neuropsychiatric and substance use disorders. However, unique contributions of these regions to stimulus- and action-based reversal learning have not been systematically compared using a chemogenetic approach and particularly before and after the first reversal that introduces new uncertainty. Here, we examined the roles of ventrolateral OFC (vlOFC) and BLA during reversal learning. Male and female rats were prepared with inhibitory DREADDs targeting projection neurons in these regions and tested on a series of deterministic and probabilistic reversals during which they learned about stimulus identity or side (left or right) associated with different reward probabilities. Using a counterbalanced within-subject design, we inhibited these regions prior to reversal sessions. We assessed initial and pre-post reversal changes in performance to measure learning and adjustments to reversals, respectively. We found that inhibition of vlOFC, but not BLA, eliminated adjustments to stimulus-based reversals. Inhibition of BLA, but not vlOFC, selectively impaired action-based probabilistic reversal learning, leaving deterministic reversal learning intact. vlOFC exhibited a sex-dependent role in early adjustment to action-based reversals, but not in overall learning. These results reveal dissociable roles for BLA and vlOFC in flexible learning and highlight a more crucial role for BLA in learning meaningful changes in the reward environment.

2.
Pharmacol Biochem Behav ; 224: 173534, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36889444

RESUMEN

Selective serotonin reuptake inhibitors (SSRIs) are medications commonly used by pregnant women. While SSRIs have been considered safe during pregnancy, there is limited understanding of the long-term consequences of prenatal SSRI exposure on adult behavioral processes. Recent human studies have demonstrated prenatal exposure to some SSRIs in humans may increase susceptibility to autism spectrum disorder (ASD) and developmental delays. While escitalopram is one of the most effective antidepressants, it is also one of the newer available SSRIs, resulting in less information on its safety profile during pregnancy. The current study administered escitalopram (0 or 10 mg/kg, s.c.) to nulliparous female Long-Evans rats for the first (G1-10) or last half (G11-20) of the gestational period. Young adult male and female offspring were subsequently tested on a battery of behavioral tasks consisting of probabilistic reversal learning task, open field conflict, marble burying and social approach tasks. Results demonstrate that escitalopram exposure during the first half of pregnancy resulted in reduced anxiety-like behavior (disinhibition) on the modified open field and enhanced flexibility on the probabilistic reversal learning task. Exposure to escitalopram later in pregnancy resulted in an increase in marble burying behavior, but no differences were found with the other measures. These results suggest that exposure to escitalopram during the first half of prenatal development can have long lasting changes on adult behavior demonstrating better behavioral flexibility and lower anxiety-like behavior compared to non-exposed controls.


Asunto(s)
Trastorno del Espectro Autista , Efectos Tardíos de la Exposición Prenatal , Ratas , Animales , Adulto Joven , Femenino , Masculino , Humanos , Embarazo , Inhibidores Selectivos de la Recaptación de Serotonina/efectos adversos , Escitalopram , Ratas Long-Evans , Efectos Tardíos de la Exposición Prenatal/inducido químicamente , Ansiedad/inducido químicamente
3.
Pharmacol Biochem Behav ; 218: 173424, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35780911

RESUMEN

Prescription psychostimulants, such as methylphenidate (MPH), have served as a first line treatment for ADHD and associated developmental disorders since 1961. Psychostimulants has been shown to improve attention, response inhibition, and reduce hyperactivity in patients with ADHD, as well as in non-clinical human populations and animals. While there is a considerable amount of preclinical research investigating the effects of stimulant medications on reward sensitivity and basic learning in male rats, less is understood about their effects in females. Further, there are competing theories on the long-term cognitive impact of MPH, specifically in children who do not have ADHD. To this end, Long-Evans female and male rats were exposed to methylphenidate (0, 2.5, 5 mg/kg, BID, IP) for 20 days during early development (PD10-29). After discontinuation of MPH into adulthood, rats (beginning PD 60) were trained and tested for risk-preference using a 2-choice probabilistic discounting task. For this task, rats were given an option between a 'large-risky' choice (3 sugar pellets delivered on a probabilistic VR schedule) and 'small-certain' choice (1 sugar pellet delivered on a FR schedule). Rats were subsequently tested on an open field conflict test. The results demonstrate that prepubertal exposure to MPH can have lasting effects on decision-making. Specifically, female rats treated with 2.5 mg/kg MPH displayed a decrease in preference for the risky option, whereas male rats treated with the same dose showed an overall increase in preference compared to sex-matched controls. Irrespective of sex, rats treated with 2.5 mg/kg MPH also demonstrated a decrease in anxiety/inhibitory behavior on the modified open field test compared to controls. These results were not due to differences in locomotor behavior. Overall, the study contributes to the growing body of evidence to suggest that MPH exposure early in development can have a sex-dependent impact on decision-making in adulthood.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Metilfenidato , Adulto , Animales , Estimulantes del Sistema Nervioso Central/farmacología , Niño , Femenino , Humanos , Masculino , Metilfenidato/farmacología , Ratas , Ratas Long-Evans , Caracteres Sexuales , Azúcares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA