Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(39): 51568-51581, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112901

RESUMEN

The current study proposes RBBR biosorption by Clostridium beijerinckii DSMZ 6422 biomass remaining after biobutanol production from pumpkin peel (PP) by a zero-waste approach. Efficient biobutanol production was achieved by investigating initial PP concentrations (5-20% without or with enzymatic hydrolysis) and fermentation time. According to this, the highest concentrations of biobutanol and total ABE were obtained as 4.87 g/L and 8.13 g/L in the presence of 10% PP without enzymatic hydrolysis at 96 h. Furthermore, based on the zero-waste approach, C. beijerinckii DSMZ 6422 biomass obtained after biofuel production was used as a biosorbent for the removal of RBBR dye. Response surface methodology (RSM), commonly utilized for the experimental design, was used to specify the optimized biosorption conditions of RBBR, including initial dye concentration (50-200 mg/L), initial pH (2-6), biosorbent concentration (1-3 g/L), and contact time (0-240 min). The highest biosorption under optimized conditions with RSM was 98% in the presence of 194.36 mg/L RBBR and 2.65 g/L biosorbent at pH 2 and 15 min. This is the first report in the literature about the biosorption of RBBR dye by anaerobic C. beijerinckii biomass after the biobutanol production process. This study also shows the efficient usage of agricultural and microbial wastes in different areas based on zero-waste applications.


Asunto(s)
Clostridium beijerinckii , Colorantes , Clostridium beijerinckii/metabolismo , Colorantes/metabolismo , Colorantes/química , Textiles , Biomasa , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Antraquinonas
2.
Prep Biochem Biotechnol ; 54(4): 483-493, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37610720

RESUMEN

This study aims the third generation biobutanol production in P2 medium supplemented D. salina biomass mixotrophically cultivated with marble waste (MW). The wastes derived from the marble industry contain approximately 90% of carbon-rich compounds. Microalgal growth in mixotrophic conditions was optimized in the 0.4-2 g/L of MW concentration range. The highest microalgal concentration was obtained as 0.481 g/L in the presence of 1 g/L MW. Furthermore, some important parameters for the production of biobutanol, such as microalgal cultivation conditions, initial mixotrophic microalgal biomass loading (50-300 g/L), and fermentation time (24-96 h) were optimized. The highest biobutanol, total ABE, biobutanol yield and productivity were determined as 11.88 g/L, 13.89 g/L, 0.331 g/g and 0.165 g/L/h at the end of 72 h in P2 medium including 60 g/L glucose and 200 g/L microalgal biomass cultivated in 1 g/L MW, respectively. The results show that D. salina is a suitable raw material for supporting Clostridium beijerinckii DSMZ 6422 cells on biobutanol production. To the best of our knowledge, this is the first study on the use of MW which is a promising feedstock on the mixotrophic cultivation of D. salina for biobutanol production.


Asunto(s)
Chlorophyceae , Clostridium beijerinckii , Microalgas , Butanoles , Biomasa , Fermentación , Carbonato de Calcio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA