Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 340: 139684, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37532201

RESUMEN

Trace minerals such as copper (Cu) and zinc (Zn) are animal nutrition supplements necessary for livestock health and breeding performance, yet they also have environmental impacts via animal excretion. Here we investigated changes in Cu and Zn speciation from the feed additive to the broiler excreta stages. The aim of this study was to assess whether different Cu and Zn feed additives induce different Cu and Zn speciation patterns, and to determine the extent to which this speciation is preserved throughout the feed-animal-excreta system. Synchrotron-based X-ray absorption spectroscopy (XAS) was used for this investigation. The principal findings were: (i) in feed, Cu and Zn speciation changed rapidly from the feed additive signature (Cu and Zn oxides or Cu and Zn sulfates) to Cu and Zn organic complexes (Cu phytate and Zn phytate). (ii) in the digestive tract, we showed that Cu and Zn phytate were major Cu and Zn species; Cu sulfide and Zn amorphous phosphate species were detected but remained minor species. (iii) in fresh excreta, Cu sulfide and Zn amorphous phosphate were major species. These results should help to: (i) enhance the design of future research studies comparing different feed additive performances; (ii) assess Cu and Zn bioavailability in the digestive tract; (iii) gain further insight into the fate of Cu and Zn in cultivated soils when poultry manure is used as fertilizer.


Asunto(s)
Ácido Fítico , Zinc , Animales , Zinc/química , Espectroscopía de Absorción de Rayos X , Pollos , Cobre/química , Fosfatos , Sulfuros
2.
Environ Pollut ; 292(Pt B): 118414, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34728325

RESUMEN

Incidental zinc sulfide nanoparticles (nano-ZnS) are spread on soils through organic waste (OW) recycling. Here we performed soil incubations with synthetic nano-ZnS (3 nm crystallite size), representative of the form found in OW. We used an original set of techniques to reveal the fate of nano-ZnS in two soils with different properties. 68Zn tracing and nano-DGT were combined during soil incubation to discriminate the available natural Zn from the soil, and the available Zn from the dissolved nano-68ZnS. This combination was crucial to highlight the dissolution of nano-68ZnS as of the third day of incubation. Based on the extended X-ray absorption fine structure, we revealed faster dissolution of nano-ZnS in clayey soil (82% within 1 month) than in sandy soil (2% within 1 month). However, the nano-DGT results showed limited availability of Zn released by nano-ZnS dissolution after 1 month in the clayey soil compared with the sandy soil. These results highlighted: (i) the key role of soil properties for nano-ZnS fate, and (ii) fast dissolution of nano-ZnS in clayey soil. Finally, the higher availability of Zn in the sandy soil despite the lower nano-ZnS dissolution rate is counterintuitive. This study demonstrated that, in addition to nanoparticle dissolution, it is also essential to take the availability of released ions into account when studying the fate of nanoparticles in soil.


Asunto(s)
Nanopartículas , Contaminantes del Suelo , Isótopos , Suelo , Contaminantes del Suelo/análisis , Sulfuros , Espectroscopía de Absorción de Rayos X , Zinc/análisis , Compuestos de Zinc
3.
Environ Sci Technol ; 52(22): 12987-12996, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30339368

RESUMEN

Zinc (Zn) is a potentially toxic trace element that is present in large amounts in organic wastes (OWs) spread on agricultural lands as fertilizer. Zn speciation in OW is a crucial parameter to understand its fate in soil after spreading and to assess the risk associated with agricultural recycling of OW. Here, we investigated changes in Zn speciation from raw OWs up to digestates and/or composts for a large series of organic wastes sampled in full-scale plants. Using extended X-ray absorption fine structure, we show that nanosized Zn sulfide (nano-ZnS) is a major Zn species in raw liquid OWs and a minor species in raw solid OWs. Whatever the characteristics of the raw OW, anaerobic digestion always favors the formation of nano-ZnS (>70% of zinc in digestates). However, after 1 to 3 months of composting of OWs, nano-ZnS becomes a minor species (<10% of zinc). In composts, Zn is mostly present as amorphous Zn phosphate and Zn sorbed to ferrihydrite. These results highlight (i) the influence of OW treatment on Zn speciation and (ii) the chemical instability of nano-ZnS formed in OW in anaerobic conditions.


Asunto(s)
Compostaje , Anaerobiosis , Suelo , Sulfuros , Zinc , Compuestos de Zinc
4.
J Environ Qual ; 46(6): 1146-1157, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29293835

RESUMEN

The study of the speciation of highly diluted elements by X-ray absorption spectroscopy (XAS) is extremely challenging, especially in environmental biogeochemistry sciences. Here we present an innovative synchrotron spectroscopy technique: high-energy resolution fluorescence detected XAS (HERFD-XAS). With this approach, measurement of the XAS signal in fluorescence mode using a crystal analyzer spectrometer with a ∼1-eV energy resolution helps to overcome restrictions on sample concentrations that can be typically measured with a solid-state detector. We briefly describe the method, from both an instrumental and spectroscopic point of view, and emphasize the effects of energy resolution on the XAS measurements. We then illustrate the positive impact of this technique in terms of detection limit with two examples dealing with Ce in ecologically relevant organisms and with Hg species in natural environments. The sharp and well-marked features of the HERFD-X-ray absorption near-edge structure spectra obtained enable us to determine unambiguously and with greater precision the speciation of the probed elements. This is a major technological advance, with strong benefits for the study of highly diluted elements using XAS. It also opens new possibilities to explore the speciation of a target chemical element at natural concentration levels, which is critical in the fields of environmental and biogeochemistry sciences.


Asunto(s)
Monitoreo del Ambiente , Espectroscopía de Absorción de Rayos X , Ecología
5.
Environ Pollut ; 212: 299-306, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26854699

RESUMEN

This study aimed at determining the fate of trace elements (TE) following soil organic waste (OW) application. We used a unique combination of X-ray absorption spectroscopy analyses, to determine TE speciation, with incubation experiments for in situ monitoring of TE availability patterns over a time course with the technique of the diffusive gradients in thin films (DGT). We showed that copper (Cu) and zinc (Zn) availability were both increased in OW-amended soil, but their release was controlled by distinct mechanisms. Zn speciation in OW was found to be dominated by an inorganic species, i.e. Zn sorbed on Fe oxides. Zn desorption from Fe oxides could explain the increase in Zn availability in OW-amended soil. Cu speciation in OW was dominated by organic species. Cu release through the mineralization of organic carbon from OW was responsible for the increase in Cu availability.


Asunto(s)
Cobre/análisis , Monitoreo del Ambiente/métodos , Contaminantes del Suelo/análisis , Suelo/química , Administración de Residuos/métodos , Residuos/análisis , Zinc/análisis , Oligoelementos/análisis , Espectroscopía de Absorción de Rayos X
6.
Nanotoxicology ; 10(2): 245-55, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26152687

RESUMEN

The toxicity of CeO2 NPs on an experimental freshwater ecosystem was studied in mesocosm, with a focus being placed on the higher trophic level, i.e. the carnivorous amphibian species Pleurodeles waltl. The system comprised species at three trophic levels: (i) bacteria, fungi and diatoms, (ii) Chironomus riparius larvae as primary consumers and (iii) Pleurodeles larvae as secondary consumers. NP contamination consisted of repeated additions of CeO2 NPs over 4 weeks, to obtain a final concentration of 1 mg/L. NPs were found to settle and accumulate in the sediment. No effects were observed on litter decomposition or associated fungal biomass. Changes in bacterial communities were observed from the third week of NP contamination. Morphological changes in CeO2 NPs were observed at the end of the experiment. No toxicity was recorded in chironomids, despite substantial NP accumulation (265.8 ± 14.1 mg Ce/kg). Mortality (35.3 ± 6.8%) and a mean Ce concentration of 13.5 ± 3.9 mg/kg were reported for Pleurodeles. Parallel experiments were performed on Pleurodeles to determine toxicity pathways: no toxicity was observed by direct or dietary exposures, although Ce concentrations almost reached 100 mg/kg. In view of these results, various toxicity mechanisms are proposed and discussed. The toxicity observed on Pleurodeles in mesocosm may be indirect, due to microorganism's interaction with CeO2 NPs, or NP dissolution could have occurred in mesocosm due to the structural complexity of the biological environment, resulting in toxicity to Pleurodeles. This study strongly supports the importance of ecotoxicological assessment of NPs under environmentally relevant conditions, using complex biological systems.


Asunto(s)
Cerio/toxicidad , Ecotoxicología/métodos , Cadena Alimentaria , Agua Dulce/microbiología , Nanopartículas/toxicidad , Animales , Bacterias/efectos de los fármacos , Biomasa , Cerio/química , Chironomidae/efectos de los fármacos , Diatomeas/efectos de los fármacos , Hongos/efectos de los fármacos , Larva/efectos de los fármacos , Nanopartículas/química , Pleurodeles
7.
Sci Rep ; 4: 5608, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-25001877

RESUMEN

Physical-chemists, (micro)biologists, and ecologists need to conduct meaningful experiments to study the environmental risk of engineered nanomaterials with access to relevant mechanistic data across several spatial and temporal scales. Indoor aquatic mesocosms (60L) that can be tailored to virtually mimic any ecosystem appear as a particularly well-suited device. Here, this concept is illustrated by a pilot study aimed at assessing the distribution of a CeO2-based nanomaterial within our system at low concentration (1.5 mg/L). Physico-chemical as well as microbiological parameters took two weeks to equilibrate. These parameters were found to be reproducible across the 9-mesocosm setup over a 45-day period of time. Recovery mass balances of 115 ± 18% and 60 ± 30% of the Ce were obtained for the pulse dosing and the chronic dosing, respectively. This demonstrated the relevance of our experimental approach that allows for adequately monitoring the fate and impact of a given nanomaterial.


Asunto(s)
Bioensayo/instrumentación , Ecosistema , Ambiente Controlado , Nanopartículas/toxicidad , Fitoplancton/fisiología , Pruebas de Toxicidad/instrumentación , Reactores Biológicos , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Diseño de Equipo , Análisis de Falla de Equipo , Ensayo de Materiales/instrumentación , Nanotecnología/instrumentación , Fitoplancton/efectos de los fármacos , Integración de Sistemas
8.
Environ Pollut ; 187: 22-30, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24418975

RESUMEN

We examined copper (Cu) absorption, distribution and toxicity and the role of a silicon (Si) supplementation in the bamboo Phyllostachys fastuosa. Bamboos were maintained in hydroponics for 4 months and submitted to two different Cu (1.5 and 100 µm Cu(2+)) and Si (0 and 1.1 mM) concentrations. Cu and Si partitioning and Cu speciation were investigated by chemical analysis, microscopic and spectroscopic techniques. Copper was present as Cu(I) and Cu(II) depending on plant parts. Bamboo mainly coped with high Cu exposure by: (i) high Cu sequestration in the root (ii) Cu(II) binding to amino and carboxyl ligands in roots, and (iii) Cu(I) complexation with both organic and inorganic sulfur ligands in stems and leaves. Silicon supplementation decreased the visible damage induced by high Cu exposure and modified Cu speciation in the leaves where a higher proportion of Cu was present as inorganic Cu(I)S compounds, which may be less toxic.


Asunto(s)
Cobre/análisis , Poaceae/fisiología , Silicio/análisis , Azufre/análisis , Cobre/metabolismo , Hidroponía , Modelos Químicos , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Poaceae/química , Silicio/metabolismo , Azufre/metabolismo
9.
PLoS One ; 8(8): e71260, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23977004

RESUMEN

The CeO2 NPs are increasingly used in industry but the environmental release of these NPs and their subsequent behavior and biological effects are currently unclear. This study evaluates for the first time the effects of CeO2 NPs on the survival and the swimming performance of two cladoceran species, Daphnia similis and Daphnia pulex after 1, 10 and 100 mg.L⁻¹ CeO2 exposures for 48 h. Acute toxicity bioassays were performed to determine EC50 of exposed daphnids. Video-recorded swimming behavior of both daphnids was used to measure swimming speeds after various exposures to aggregated CeO2 NPs. The acute ecotoxicity showed that D. similis is 350 times more sensitive to CeO2 NPs than D. pulex, showing 48-h EC50 of 0.26 mg.L⁻¹ and 91.79 mg.L⁻¹, respectively. Both species interacted with CeO2 NPs (adsorption), but much more strongly in the case of D. similis. Swimming velocities (SV) were differently and significantly affected by CeO2 NPs for both species. A 48-h exposure to 1 mg.L⁻¹ induced a decrease of 30% and 40% of the SV in D. pulex and D. similis, respectively. However at higher concentrations, the SV of D. similis was more impacted (60% off for 10 mg.L⁻¹ and 100 mg.L⁻¹) than the one of D. pulex. These interspecific toxic effects of CeO2 NPs are explained by morphological variations such as the presence of reliefs on the cuticle and a longer distal spine in D. similis acting as traps for the CeO2 aggregates. In addition, D. similis has a mean SV double that of D. pulex and thus initially collides with twice more NPs aggregates. The ecotoxicological consequences on the behavior and physiology of a CeO2 NPs exposure in daphnids are discussed.


Asunto(s)
Cerio/toxicidad , Daphnia/efectos de los fármacos , Nanopartículas/toxicidad , Animales , Daphnia/fisiología , Concentración 50 Inhibidora , Especificidad de la Especie , Natación , Grabación en Video
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...