Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
EBioMedicine ; 104: 105181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38838469

RESUMEN

BACKGROUND: Although several SARS-CoV-2-related coronaviruses (SC2r-CoVs) were discovered in bats and pangolins, the differences in virological characteristics between SARS-CoV-2 and SC2r-CoVs remain poorly understood. Recently, BANAL-20-236 (B236) was isolated from a rectal swab of Malayan horseshoe bat and was found to lack a furin cleavage site (FCS) in the spike (S) protein. The comparison of its virological characteristics with FCS-deleted SARS-CoV-2 (SC2ΔFCS) has not been conducted yet. METHODS: We prepared human induced pluripotent stem cell (iPSC)-derived airway and lung epithelial cells and colon organoids as human organ-relevant models. B236, SARS-CoV-2, and artificially generated SC2ΔFCS were used for viral experiments. To investigate the pathogenicity of B236 in vivo, we conducted intranasal infection experiments in hamsters. FINDINGS: In human iPSC-derived airway epithelial cells, the growth of B236 was significantly lower than that of the SC2ΔFCS. A fusion assay showed that the B236 and SC2ΔFCS S proteins were less fusogenic than the SARS-CoV-2 S protein. The infection experiment in hamsters showed that B236 was less pathogenic than SARS-CoV-2 and even SC2ΔFCS. Interestingly, in human colon organoids, the growth of B236 was significantly greater than that of SARS-CoV-2. INTERPRETATION: Compared to SARS-CoV-2, we demonstrated that B236 exhibited a tropism toward intestinal cells rather than respiratory cells. Our results are consistent with a previous report showing that B236 is enterotropic in macaques. Altogether, our report strengthens the assumption that SC2r-CoVs in horseshoe bats replicate primarily in the intestinal tissues rather than respiratory tissues. FUNDING: This study was supported in part by AMED ASPIRE (JP23jf0126002, to Keita Matsuno, Kazuo Takayama, and Kei Sato); AMED SCARDA Japan Initiative for World-leading Vaccine Research and Development Centers "UTOPIA" (JP223fa627001, to Kei Sato), AMED SCARDA Program on R&D of new generation vaccine including new modality application (JP223fa727002, to Kei Sato); AMED SCARDA Hokkaido University Institute for Vaccine Research and Development (HU-IVReD) (JP223fa627005h0001, to Takasuke Fukuhara, and Keita Matsuno); AMED Research Program on Emerging and Re-emerging Infectious Diseases (JP21fk0108574, to Hesham Nasser; JP21fk0108493, to Takasuke Fukuhara; JP22fk0108617 to Takasuke Fukuhara; JP22fk0108146, to Kei Sato; JP21fk0108494 to G2P-Japan Consortium, Keita Matsuno, Shinya Tanaka, Terumasa Ikeda, Takasuke Fukuhara, and Kei Sato; JP21fk0108425, to Kazuo Takayama and Kei Sato; JP21fk0108432, to Kazuo Takayama, Takasuke Fukuhara and Kei Sato; JP22fk0108534, Terumasa Ikeda, and Kei Sato; JP22fk0108511, to Yuki Yamamoto, Terumasa Ikeda, Keita Matsuno, Shinya Tanaka, Kazuo Takayama, Takasuke Fukuhara, and Kei Sato; JP22fk0108506, to Kazuo Takayama and Kei Sato); AMED Research Program on HIV/AIDS (JP22fk0410055, to Terumasa Ikeda; and JP22fk0410039, to Kei Sato); AMED Japan Program for Infectious Diseases Research and Infrastructure (JP22wm0125008 to Keita Matsuno); AMED CREST (JP21gm1610005, to Kazuo Takayama; JP22gm1610008, to Takasuke Fukuhara; JST PRESTO (JPMJPR22R1, to Jumpei Ito); JST CREST (JPMJCR20H4, to Kei Sato); JSPS KAKENHI Fund for the Promotion of Joint International Research (International Leading Research) (JP23K20041, to G2P-Japan Consortium, Keita Matsuno, Takasuke Fukuhara and Kei Sato); JST SPRING (JPMJSP2108 to Shigeru Fujita); JSPS KAKENHI Grant-in-Aid for Scientific Research C (22K07103, to Terumasa Ikeda); JSPS KAKENHI Grant-in-Aid for Scientific Research B (21H02736, to Takasuke Fukuhara); JSPS KAKENHI Grant-in-Aid for Early-Career Scientists (22K16375, to Hesham Nasser; 20K15767, to Jumpei Ito); JSPS Core-to-Core Program (A. Advanced Research Networks) (JPJSCCA20190008, to Kei Sato); JSPS Research Fellow DC2 (22J11578, to Keiya Uriu); JSPS Research Fellow DC1 (23KJ0710, to Yusuke Kosugi); JSPS Leading Initiative for Excellent Young Researchers (LEADER) (to Terumasa Ikeda); World-leading Innovative and Smart Education (WISE) Program 1801 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) (to Naganori Nao); Ministry of Health, Labour and Welfare (MHLW) under grant 23HA2010 (to Naganori Nao and Keita Matsuno); The Cooperative Research Program (Joint Usage/Research Center program) of Institute for Life and Medical Sciences, Kyoto University (to Kei Sato); International Joint Research Project of the Institute of Medical Science, the University of Tokyo (to Terumasa Ikeda and Takasuke Fukuhara); The Tokyo Biochemical Research Foundation (to Kei Sato); Takeda Science Foundation (to Terumasa Ikeda and Takasuke Fukuhara); Mochida Memorial Foundation for Medical and Pharmaceutical Research (to Terumasa Ikeda); The Naito Foundation (to Terumasa Ikeda); Hokuto Foundation for Bioscience (to Tomokazu Tamura); Hirose Foundation (to Tomokazu Tamura); and Mitsubishi Foundation (to Kei Sato).


Asunto(s)
COVID-19 , Quirópteros , SARS-CoV-2 , Animales , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Humanos , COVID-19/virología , Quirópteros/virología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Organoides/virología , Organoides/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/virología , Cricetinae , Furina/metabolismo , Células Epiteliales/virología , Células Vero , Chlorocebus aethiops
2.
Viruses ; 15(9)2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37766237

RESUMEN

Arthropod-borne viruses (arboviruses) pose a significant global health threat and are primarily transmitted by mosquitoes. In Cambodia, there are currently 290 recorded mosquito species, with at least 17 of them considered potential vectors of arboviruses to humans. Effective surveillance of virome profiles in mosquitoes from Cambodia is vital, as it could help prevent and control arbovirus diseases in a country where epidemics occur frequently. The objective of this study was to identify and characterize the viral diversity in mosquitoes collected during a one-year longitudinal study conducted in various habitats across Cambodia. For this purpose, we used a metatranscriptomics approach and detected the presence of chikungunya virus in the collected mosquitoes. Additionally, we identified viruses categorized into 26 taxa, including those known to harbor arboviruses such as Flaviviridae and Orthomyxoviridae, along with a group of viruses not yet taxonomically identified and provisionally named "unclassified viruses". Interestingly, the taxa detected varied in abundance and composition depending on the mosquito genus, with no significant influence of the collection season. Furthermore, most of the identified viruses were either closely related to viruses found exclusively in insects or represented new viruses belonging to the Rhabdoviridae and Birnaviridae families. The transmission capabilities of these novel viruses to vertebrates remain unknown.


Asunto(s)
Birnaviridae , Culicidae , Humanos , Animales , Cambodia/epidemiología , Estudios Longitudinales , Mosquitos Vectores
3.
Viruses ; 15(9)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37766259

RESUMEN

The diversity and circulation of arboviruses are not much studied in Madagascar. The fact is that arboviral emergences are rarely detected. The existing surveillance system primarily relies on serological detection and records only a few human infections annually. The city of Mahajanga, however, experienced a confirmed dengue fever epidemic in 2020 and 2021. This study aimed to characterize and analyze the virome of mosquitoes collected in Mahajanga, near patients with dengue-like syndromes to detect known and unknown viruses as well as investigate the factors contributing to the relative low circulation of arboviruses in the area. A total of 4280 mosquitoes representing at least 12 species from the Aedes, Anopheles, and Culex genera were collected during the dry and the rainy seasons from three sites, following an urbanization gradient. The virome analysis of 2192 female mosquitoes identified a diverse range of viral families and genera and revealed different patterns that are signatures of the influence of the mosquito genus or the season of collection on the composition and abundance of the virome. Despite the absence of known human or veterinary arboviruses, the identification and characterization of viral families, genera, and species in the mosquito virome contribute to our understanding of viral ecology and diversity within mosquito populations in Madagascar. This study serves as a foundation for ongoing surveillance efforts and provides a basis for the development of preventive strategies against various mosquito-borne viral diseases, including known arboviruses.

4.
Viruses ; 15(9)2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37766303

RESUMEN

Bats are a major reservoir of zoonotic viruses, including coronaviruses. Since the emergence of SARS-CoV in 2002/2003 in Asia, important efforts have been made to describe the diversity of Coronaviridae circulating in bats worldwide, leading to the discovery of the precursors of epidemic and pandemic sarbecoviruses in horseshoe bats. We investigated the viral communities infecting horseshoe bats living in Northern Vietnam, and report here the first identification of sarbecoviruses in Rhinolophus thomasi and Rhinolophus siamensis bats. Phylogenetic characterization of seven strains of Vietnamese sarbecoviruses identified at least three clusters of viruses. Recombination and cross-species transmission between bats seemed to constitute major drivers of virus evolution. Vietnamese sarbecoviruses were mainly enteric, therefore constituting a risk of spillover for guano collectors or people visiting caves. To evaluate the zoonotic potential of these viruses, we analyzed in silico and in vitro the ability of their RBDs to bind to mammalian ACE2s and concluded that these viruses are likely restricted to their bat hosts. The workflow applied here to characterize the spillover potential of novel sarbecoviruses is of major interest for each time a new virus is discovered, in order to concentrate surveillance efforts on high-risk interfaces.


Asunto(s)
Quirópteros , Infecciones por Coronavirus , Coronavirus , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo , Humanos , Animales , Coronavirus/genética , Vietnam/epidemiología , Filogenia , Genotipo , Fenotipo , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/veterinaria , Pandemias
5.
Viruses ; 15(6)2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37376527

RESUMEN

The improvement of our knowledge of the virosphere, which includes unknown viruses, is a key area in virology. Metagenomics tools, which perform taxonomic assignation from high throughput sequencing datasets, are generally evaluated with datasets derived from biological samples or in silico spiked samples containing known viral sequences present in public databases, resulting in the inability to evaluate the capacity of these tools to detect novel or distant viruses. Simulating realistic evolutionary directions is therefore key to benchmark and improve these tools. Additionally, expanding current databases with realistic simulated sequences can improve the capacity of alignment-based searching strategies for finding distant viruses, which could lead to a better characterization of the "dark matter" of metagenomics data. Here, we present Virus Pop, a novel pipeline for simulating realistic protein sequences and adding new branches to a protein phylogenetic tree. The tool generates simulated sequences with substitution rate variations that are dependent on protein domains and inferred from the input dataset, allowing for a realistic representation of protein evolution. The pipeline also infers ancestral sequences corresponding to multiple internal nodes of the input data phylogenetic tree, enabling new sequences to be inserted at various points of interest in the group studied. We demonstrated that Virus Pop produces simulated sequences that closely match the structural and functional characteristics of real protein sequences, taking as an example the spike protein of sarbecoviruses. Virus Pop also succeeded at creating sequences that resemble real sequences not included in the databases, which facilitated the identification of a novel pathogenic human circovirus not included in the input database. In conclusion, Virus Pop is helpful for challenging taxonomic assignation tools and could help improve databases to better detect distant viruses.


Asunto(s)
Biología Computacional , Virus , Humanos , Filogenia , Biología Computacional/métodos , Simulación por Computador , Bases de Datos Factuales , Virus/genética , Metagenómica/métodos
6.
EMBO Rep ; 24(4): e56055, 2023 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-36876574

RESUMEN

Bat sarbecovirus BANAL-236 is highly related to SARS-CoV-2 and infects human cells, albeit lacking the furin cleavage site in its spike protein. BANAL-236 replicates efficiently and pauci-symptomatically in humanized mice and in macaques, where its tropism is enteric, strongly differing from that of SARS-CoV-2. BANAL-236 infection leads to protection against superinfection by a virulent strain. We find no evidence of antibodies recognizing bat sarbecoviruses in populations in close contact with bats in which the virus was identified, indicating that such spillover infections, if they occur, are rare. Six passages in humanized mice or in human intestinal cells, mimicking putative early spillover events, select adaptive mutations without appearance of a furin cleavage site and no change in virulence. Therefore, acquisition of a furin site in the spike protein is likely a pre-spillover event that did not occur upon replication of a SARS-CoV-2-like bat virus in humans or other animals. Other hypotheses regarding the origin of the SARS-CoV-2 should therefore be evaluated, including the presence of sarbecoviruses carrying a spike with a furin cleavage site in bats.


Asunto(s)
COVID-19 , Humanos , Animales , Ratones , SARS-CoV-2 , Furina/genética , Furina/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Mutación
8.
Microorganisms ; 11(1)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36677501

RESUMEN

Tick-borne diseases are responsible for many vector-borne diseases within Europe. Recently, novel viruses belonging to a new viral family of the order Bunyavirales were discovered in numerous tick species. In this study, we used metatranscriptomics to detect the virome, including novel viruses, associated with Ixodes ricinus collected from Romania and France. A bunyavirus-like virus related to the Bronnoya virus was identified for the first time in these regions. It presents a high level of amino-acid conservation with Bronnoya-related viruses identified in I. ricinus ticks from Norway and Croatia and with the Ixodes scapularis bunyavirus isolated from a tick cell line in Japan in 2014. Phylogenetic analyses revealed that the Bronnoya viruses' sub-clade is distinct from several Bunyavirales families, suggesting that it could constitute a novel family within the order. To determine if Bronnoya viruses could constitute novel tick-borne arboviruses, a Luciferase immunoprecipitation assay for detecting antibodies in the viral glycoprotein of the Romanian Bronnoya virus was used to screen sera from small ruminants exposed to tick bites. No positive serum was detected, suggesting that this virus is probably not able to infect small ruminants. This study represents the first serological investigation of mammalian infections with a Bronnoya-like virus and an initial step in the identification of potential new emergences of tick-borne arboviruses.

9.
Viruses ; 14(9)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36146797

RESUMEN

We present Microseek, a pipeline for virus identification and discovery based on RVDB-prot, a comprehensive, curated and regularly updated database of viral proteins. Microseek analyzes metagenomic Next Generation Sequencing (mNGS) raw data by performing quality steps, de novo assembly, and by scoring the Lowest Common Ancestor (LCA) from translated reads and contigs. Microseek runs on a local computer. The outcome of the pipeline is displayed through a user-friendly and dynamic graphical interface. Based on two representative mNGS datasets derived from human tissue and plasma specimens, we illustrate how Microseek works, and we report its performances. In silico spikes of known viral sequences, but also spikes of fake Neopneumovirus viral sequences generated with variable evolutionary distances from known members of the Pneumoviridae family, were used. Results were compared to Chan Zuckerberg ID (CZ ID), a reference cloud-based mNGS pipeline. We show that Microseek reliably identifies known viral sequences and performs well for the detection of distant pseudoviral sequences, especially in complex samples such as in human plasma, while minimizing non-relevant hits.


Asunto(s)
Metagenómica , Virus , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenoma , Metagenómica/métodos , Proteínas Virales/genética , Virus/genética
11.
Vector Borne Zoonotic Dis ; 22(7): 397-401, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35772004

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne disease that can be contracted by direct contact with viremic animals or humans. Domestic animals are accidental hosts and contribute to the spread and amplification of the virus. The main objective of this study was to provide updated information related to CCHF virus (CCHFV) infection in Southern Romania by assessing the seroprevalence of CCHF in small ruminants (sheep and goats) using a double-antigen sandwich enzyme-linked immunosorbent assay and by detection of CCHFV in engorged ticks and serum samples using real-time RT-PCR. The overall seroprevalence of CCHF in small ruminants was 37.7% (95% CI 31.7 to 43.7). No statistical seroprevalence difference was observed between the two species of ruminants (p = 0.76), but a significant difference was established between the locations (p < 0.01). No CCHFV RNA was detected in tick pools and small ruminant's sera tested by real-time RT-PCR, although the high seroprevalence to CCHFV among ruminants indicates that CCHV or a closely related virus circulates in Southern Romania.


Asunto(s)
Enfermedades de las Cabras , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Enfermedades de las Ovejas , Garrapatas , Animales , Anticuerpos Antivirales , Enfermedades de las Cabras/epidemiología , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/epidemiología , Fiebre Hemorrágica de Crimea/veterinaria , Humanos , Rumanía/epidemiología , Rumiantes , Estudios Seroepidemiológicos , Ovinos , Enfermedades de las Ovejas/epidemiología
12.
Front Vet Sci ; 9: 863814, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498749

RESUMEN

Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The members of the Quaranjavirus genus are mainly associated with argas ticks but recent studies demonstrated the presence of novel quaranjaviruses-like in ixodid ticks. In 2020, 169 Rhipicephalus sanguineus ticks were collected in Southern Romania from small ruminants and analyzed by high-throughput transcriptome sequencing. Among the viral families that infect Romanian ticks, we have identified sequences from Phenuiviridae (Brown dog tick phlebovirus 1 [BDTPV1] and Brown dog tick phlebovirus 2 [BDTPV2]) and Chuviridae families (Cataloi mivirus [CTMV]), and numerous sequences from a new quaranjavirus-like, tentatively named Cataloi tick quaranjavirus (CTQV). Phylogenetic analyses performed on the five segments show that CTQV is phylogenetically positioned within a clade that encompasses Ixodidae-borne viruses associated with iguanas, small ruminants, seabirds, and penguins distributed across different geographical areas. Furthermore, CTQV is positioned differently depending on the segment considered. This is the first report on the detection of a quaranjavirus-like in Eastern Europe. Further investigations are needed to discern its infectivity and pathogenicity against vertebrates.

13.
Nature ; 604(7905): 330-336, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35172323

RESUMEN

The animal reservoir of SARS-CoV-2 is unknown despite reports of SARS-CoV-2-related viruses in Asian Rhinolophus bats1-4, including the closest virus from R. affinis, RaTG13 (refs. 5,6), and pangolins7-9. SARS-CoV-2 has a mosaic genome, to which different progenitors contribute. The spike sequence determines the binding affinity and accessibility of its receptor-binding domain to the cellular angiotensin-converting enzyme 2 (ACE2) receptor and is responsible for host range10-12. SARS-CoV-2 progenitor bat viruses genetically close to SARS-CoV-2 and able to enter human cells through a human ACE2 (hACE2) pathway have not yet been identified, although they would be key in understanding the origin of the epidemic. Here we show that such viruses circulate in cave bats living in the limestone karstic terrain in northern Laos, in the Indochinese peninsula. We found that the receptor-binding domains of these viruses differ from that of SARS-CoV-2 by only one or two residues at the interface with ACE2, bind more efficiently to the hACE2 protein than that of the SARS-CoV-2 strain isolated in Wuhan from early human cases, and mediate hACE2-dependent entry and replication in human cells, which is inhibited by antibodies that neutralize SARS-CoV-2. None of these bat viruses contains a furin cleavage site in the spike protein. Our findings therefore indicate that bat-borne SARS-CoV-2-like viruses that are potentially infectious for humans circulate in Rhinolophus spp. in the Indochinese peninsula.


Asunto(s)
COVID-19 , Quirópteros , Enzima Convertidora de Angiotensina 2 , Animales , Asia , Cuevas , Quirópteros/virología , Reservorios de Enfermedades , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/química
14.
Transbound Emerg Dis ; 69(3): 1387-1403, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33840161

RESUMEN

Ticks are involved in the transmission of various pathogens and several tick-borne diseases cause significant problems for the health of humans and livestock. The composition of viral communities in ticks and their interactions with pathogens, is poorly understood, particularly in Eastern Europe, an area that represents a major hub for animal-arthropod vectors exchanges (e.g., via bird migrations). The aim of this study was to describe the virome of Dermacentor sp., Rhipicephalus sp. and Haemaphysalis sp. ticks collected from relatively little studied regions of Romania (Iasi and Tulcea counties) located at the intersection of various biotopes, countries and routes of migrations. We also focused the study on viruses that could potentially have relevance for human and animal health. In 2019, more than 500 ticks were collected from the vegetation and from small ruminants and analysed by high-throughput transcriptome sequencing. Among the viral communities infecting Romanian ticks, viruses belonging to the Flaviviridae, Phenuiviridae and Nairoviridae families were identified and full genomes were derived. Phylogenetic analyses placed them in clades where mammalian isolates are found, suggesting that these viruses could constitute novel arboviruses. The characterization of these communities increase the knowledge of the diversity of viruses in Eastern Europe and provides a basis for further studies about the interrelationship between ticks and tick-borne viruses.


Asunto(s)
Dermacentor , Ixodidae , Virus ARN , Rhipicephalus , Virus , Animales , Humanos , Mamíferos , Filogenia , Salud Pública , Rumanía/epidemiología , Viroma
15.
Lancet Reg Health West Pac ; 13: 100197, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34278365

RESUMEN

BACKGROUND: In 2020 Lao PDR had low reported COVID-19 cases but it was unclear whether this masked silent transmission. A seroprevalence study was done August - September 2020 to determine SARS-CoV-2 exposure. METHODS: Participants were from the general community (n=2433) or healthcare workers (n=666) in five provinces and bat/wildlife contacts (n=74) were from Vientiane province. ELISAs detected anti- SARS-CoV-2 Nucleoprotein (N; n=3173 tested) and Spike (S; n=1417 tested) antibodies. Double-positive samples were checked by IgM/IgG rapid tests. Controls were confirmed COVID-19 cases (n=15) and pre-COVID-19 samples (n=265). Seroprevalence for the general community was weighted to account for complex survey sample design, age and sex. FINDINGS: In pre-COVID-19 samples, 5·3%, [95% CI=3·1-8·7%] were anti-N antibody single-positive and 1·1% [0·3-3·5%] were anti-S antibody single positive. None were double positive. Anti-N and anti-S antibodies were detected in 5·2% [4·2-6·5%] and 2·1% [1·1-3·9%] of the general community, 2·0% [1·1-3·3%] and 1·4% [0·5-3·7%] of healthcare workers and 20·3% [12·6-31·0%] and 6·8% [2·8-15·3%] of bat/wildlife contacts. 0·1% [0·02-0·3%] were double positive for anti-N and anti-S antibodies (rapid test negative). INTERPRETATION: We find no evidence for significant SARS-CoV-2 circulation in Lao PDR before September 2020. This likely results from early decisive measures taken by the government, social behavior, and low population density. High anti-N /low anti-S seroprevalence in bat/wildlife contacts may indicate exposure to cross-reactive animal coronaviruses with threat of emerging novel viruses. FUNDING: Agence Française de Développement. Additional; Institut Pasteur du Laos, Institute Pasteur, Paris and Luxembourg Ministry of Foreign and European Affairs ("PaReCIDS II").

16.
Euro Surveill ; 26(13)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33797390

RESUMEN

BackgroundChildren have a low rate of COVID-19 and secondary severe multisystem inflammatory syndrome (MIS) but present a high prevalence of symptomatic seasonal coronavirus infections.AimWe tested if prior infections by seasonal coronaviruses (HCoV) NL63, HKU1, 229E or OC43 as assessed by serology, provide cross-protective immunity against SARS-CoV-2 infection.MethodsWe set a cross-sectional observational multicentric study in pauci- or asymptomatic children hospitalised in Paris during the first wave for reasons other than COVID (hospitalised children (HOS), n = 739) plus children presenting with MIS (n = 36). SARS-CoV-2 antibodies directed against the nucleoprotein (N) and S1 and S2 domains of the spike (S) proteins were monitored by an in-house luciferase immunoprecipitation system assay. We randomly selected 69 SARS-CoV-2-seropositive patients (including 15 with MIS) and 115 matched SARS-CoV-2-seronegative patients (controls (CTL)). We measured antibodies against SARS-CoV-2 and HCoV as evidence for prior corresponding infections and assessed if SARS-CoV-2 prevalence of infection and levels of antibody responses were shaped by prior seasonal coronavirus infections.ResultsPrevalence of HCoV infections were similar in HOS, MIS and CTL groups. Antibody levels against HCoV were not significantly different in the three groups and were not related to the level of SARS-CoV-2 antibodies in the HOS and MIS groups. SARS-CoV-2 antibody profiles were different between HOS and MIS children.ConclusionPrior infection by seasonal coronaviruses, as assessed by serology, does not interfere with SARS-CoV-2 infection and related MIS in children.


Asunto(s)
Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Coronavirus Humano OC43 , SARS-CoV-2/inmunología , Síndrome de Respuesta Inflamatoria Sistémica , Adolescente , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , Niño , Preescolar , Estudios Transversales , Femenino , Francia/epidemiología , Humanos , Lactante , Recién Nacido , Masculino , Paris , Estaciones del Año , Pruebas Serológicas/métodos , Glicoproteína de la Espiga del Coronavirus
17.
Euro Surveill ; 26(15)2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33860747

RESUMEN

BackgroundChildren's role in SARS-CoV-2 epidemiology remains unclear. We investigated an initially unnoticed SARS-CoV-2 outbreak linked to schools in northern France, beginning as early as mid-January 2020.AimsThis retrospective observational study documents the extent of SARS-CoV-2 transmission, linked to an affected high school (n = 664 participants) and primary schools (n = 1,340 study participants), in the context of unsuspected SARS-CoV-2 circulation and limited control measures.MethodsBetween 30 March and 30 April 2020, all school staff, as well as pupils and their parents and relatives were invited for SARS-CoV-2 antibody testing and to complete a questionnaire covering symptom history since 13 January 2020.ResultsIn the high school, infection attack rates were 38.1% (91/239), 43.4% (23/53), and 59.3% (16/27), in pupils, teachers, and non-teaching staff respectively vs 10.1% (23/228) and 12.0% (14/117) in the pupils' parents and relatives (p < 0.001). Among the six primary schools, three children attending separate schools at the outbreak start, while symptomatic, might have introduced SARS-CoV-2 there, but symptomatic secondary cases related to them could not be definitely identified. In the primary schools overall, antibody prevalence in pupils sharing classes with symptomatic cases was higher than in pupils from other classes: 15/65 (23.1%) vs 30/445 (6.7%) (p < 0.001). Among 46 SARS-CoV-2 seropositive pupils < 12 years old, 20 were asymptomatic. Whether past HKU1 and OC43 seasonal coronavirus infection protected against SARS-CoV-2 infection in 6-11 year olds could not be inferred.ConclusionsViral circulation can occur in high and primary schools so keeping them open requires consideration of appropriate control measures and enhanced surveillance.


Asunto(s)
COVID-19 , Niño , Estudios de Cohortes , Francia/epidemiología , Humanos , Estudios Retrospectivos , SARS-CoV-2 , Instituciones Académicas
18.
Viruses ; 13(2)2021 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-33562285

RESUMEN

Clinical metagenomics is a broad-range agnostic detection method of pathogens, including novel microorganisms. A major limit is the low pathogen load compared to the high background of host nucleic acids. To overcome this issue, several solutions exist, such as applying a very high depth of sequencing, or performing a relative enrichment of viral genomes associated with capsids. At the end, the quantity of total nucleic acids is often below the concentrations recommended by the manufacturers of library kits, which necessitates to random amplify nucleic acids. Using a pool of 26 viruses representative of viral diversity, we observed a deep impact of the nature of sample (total nucleic acids versus RNA only), the reverse transcription, the random amplification and library construction method on virus recovery. We further optimized the two most promising methods and assessed their performance with fully characterized reference virus stocks. Good genome coverage and limit of detection lower than 100 or 1000 genome copies per mL of plasma, depending on the genome viral type, were obtained from a three million reads dataset. Our study reveals that optimized random amplification is a technique of choice when insufficient amounts of nucleic acid are available for direct libraries constructions.


Asunto(s)
Genoma Viral/genética , Metagenómica/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus/aislamiento & purificación , Biblioteca Genómica , Humanos , Límite de Detección , Virus/genética
19.
Am J Transplant ; 21(5): 1937-1943, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33346946

RESUMEN

Graft artery stenosis can have a significant short- and long-term negative impact on renal graft function. From the beginning of the COVID-19 pandemic, we noticed an unusual number of graft arterial anomalies following kidney transplant (KTx) in children. Nine children received a KTx at our center between February and July 2020, eight boys and one girl, of median age of 10 years. Seven presented Doppler features suggesting arterial stenosis, with an unusual extensive pattern. For comparison, over the previous 5-year period, persistent spectral Doppler arterial anomalies (focal anastomotic stenoses) following KTx were seen in 5% of children at our center. We retrospectively evidenced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in five of seven children with arterial stenosis. The remaining two patients had received a graft from a deceased adolescent donor with a positive serology at D0. These data led us to suspect immune postviral graft vasculitis, triggered by SARS-CoV-2. Because the diagnosis of COVID-19 is challenging in children, we recommend pretransplant monitoring of graft recipients and their parents by monthly RT-PCR and serology. We suggest balancing the risk of postviral graft vasculitis against the risk of prolonged dialysis when considering transplantation in a child during the pandemic.


Asunto(s)
Arterias/patología , COVID-19/complicaciones , Trasplante de Riñón , Riñón/irrigación sanguínea , Pandemias , Adolescente , Niño , Constricción Patológica/patología , Femenino , Humanos , Masculino , Estudios Retrospectivos
20.
Clin Infect Dis ; 72(10): 1701-1708, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32516409

RESUMEN

BACKGROUND: Human encephalitis represents a medical challenge from a diagnostic and therapeutic point of view. We investigated the cause of 2 fatal cases of encephalitis of unknown origin in immunocompromised patients. METHODS: Untargeted metatranscriptomics was applied on the brain tissue of 2 patients to search for pathogens (viruses, bacteria, fungi, or protozoans) without a prior hypothesis. RESULTS: Umbre arbovirus, an orthobunyavirus never previously identified in humans, was found in 2 patients. In situ hybridization and reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) showed that Umbre virus infected neurons and replicated at high titers. The virus was not detected in cerebrospinal fluid by RT-qPCR. Viral sequences related to Koongol virus, another orthobunyavirus close to Umbre virus, were found in Culex pipiens mosquitoes captured in the south of France where the patients had spent some time before the onset of symptoms, demonstrating the presence of the same clade of arboviruses in Europe and their potential public health impact. A serological survey conducted in the same area did not identify individuals positive for Umbre virus. The absence of seropositivity in the population may not reflect the actual risk of disease transmission in immunocompromised individuals. CONCLUSIONS: Umbre arbovirus can cause encephalitis in immunocompromised humans and is present in Europe.


Asunto(s)
Agammaglobulinemia , Encefalitis , Orthobunyavirus , Virus , Animales , Europa (Continente) , Francia/epidemiología , Humanos , Orthobunyavirus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...