Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Chem Inf Model ; 63(20): 6396-6411, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37774242

RESUMEN

Due to their potential as leads for various therapeutic applications, including as antimitotic and antiparasitic agents, the development of tubulin inhibitors offers promise for drug discovery. In this study, an in silico pharmacophore-based virtual screening approach targeting the colchicine binding site of ß-tubulin was employed. Several structure- and ligand-based models for known tubulin inhibitors were generated. Compound databases were virtually screened against the models, and prioritized hits from the SPECS compound library were tested in an in vitro tubulin polymerization inhibition assay for their experimental validation. Out of the 41 SPECS compounds tested, 11 were active tubulin polymerization inhibitors, leading to a prospective true positive hit rate of 26.8%. Two novel inhibitors displayed IC50 values in the range of colchicine. The most potent of which was a novel acetamide-bridged benzodiazepine/benzimidazole derivative with an IC50 = 2.9 µM. The screening workflow led to the identification of diverse inhibitors active at the tubulin colchicine binding site. Thus, the pharmacophore models show promise as valuable tools for the discovery of compounds and as potential leads for the development of cancer therapeutic agents.


Asunto(s)
Antineoplásicos , Moduladores de Tubulina , Moduladores de Tubulina/farmacología , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Relación Estructura-Actividad , Estudios Prospectivos , Colchicina/farmacología , Colchicina/química , Colchicina/metabolismo , Antineoplásicos/farmacología , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura Molecular
2.
Bioorg Chem ; 139: 106685, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37418786

RESUMEN

Inflammatory responses are orchestrated by a plethora of lipid mediators, and perturbations of their biosynthesis or degradation hinder resolution and lead to uncontrolled inflammation, which contributes to diverse pathologies. Small molecules that induce a switch from pro-inflammatory to anti-inflammatory lipid mediators are considered valuable for the treatment of chronic inflammatory diseases. Commonly used non-steroidal anti-inflammatory drugs (NSAIDs) are afflicted with side effects caused by the inhibition of beneficial prostanoid formation and redirection of arachidonic acid (AA) into alternative pathways. Multi-target inhibitors like diflapolin, the first dual inhibitor of soluble epoxide hydrolase (sEH) and 5-lipoxygenase-activating protein (FLAP), promise improved efficacy and safety but are confronted by poor solubility and bioavailability. Four series of derivatives bearing isomeric thiazolopyridines as bioisosteric replacement of the benzothiazole core and two series additionally containing mono- or diaza-isosteres of the phenylene spacer were designed and synthesized to improve solubility. The combination of thiazolo[5,4-b]pyridine, a pyridinylen spacer and a 3,5-Cl2-substituted terminal phenyl ring (46a) enhances solubility and FLAP antagonism, while preserving sEH inhibition. Moreover, the thiazolo[4,5-c]pyridine derivative 41b, although being a less potent sEH/FLAP inhibitor, additionally decreases thromboxane production in activated human peripheral blood mononuclear cells. We conclude that the introduction of nitrogen, depending on the position, not only enhances solubility and FLAP antagonism (46a), but also represents a valid strategy to expand the scope of application towards inhibition of thromboxane biosynthesis.


Asunto(s)
Inhibidores de Proteína Activante de 5-Lipoxigenasa , Inhibidores de la Lipooxigenasa , Humanos , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de Proteína Activante de 5-Lipoxigenasa/farmacología , Solubilidad , Leucocitos Mononucleares/metabolismo , Epóxido Hidrolasas/metabolismo , Inhibidores Enzimáticos/farmacología , Antiinflamatorios/farmacología , Piridinas/farmacología , Tromboxanos , Lípidos
3.
Biomedicines ; 11(5)2023 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-37239139

RESUMEN

Different dopamine receptor (DR) subtypes are involved in pathophysiological conditions such as Parkinson's Disease (PD), schizophrenia and depression. While many DR-targeting drugs have been approved by the U.S. Food and Drug Administration (FDA), only a very small number are truly selective for one of the DR subtypes. Additionally, most of them show promiscuous activity at related G-protein coupled receptors, thus suffering from diverse side-effect profiles. Multiple studies have shown that combined in silico/in vitro approaches are a valuable contribution to drug discovery processes. They can also be applied to divulge the mechanisms behind ligand selectivity. In this study, novel DR ligands were investigated in vitro to assess binding affinities at different DR subtypes. Thus, nine D2R/D3R-selective ligands (micro- to nanomolar binding affinities, D3R-selective profile) were successfully identified. The most promising ligand exerted nanomolar D3R activity (Ki = 2.3 nM) with 263.7-fold D2R/D3R selectivity. Subsequently, ligand selectivity was rationalized in silico based on ligand interaction with a secondary binding pocket, supporting the selectivity data determined in vitro. The developed workflow and identified ligands could aid in the further understanding of the structural motifs responsible for DR subtype selectivity, thus benefitting drug development in D2R/D3R-associated pathologies such as PD.

4.
J Chem Inf Model ; 63(4): 1249-1259, 2023 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-36799916

RESUMEN

Glutamate carboxypeptidase II (GCPII) is a metalloprotease implicated in neurological diseases and prostate oncology. While several classes of potent GCPII-specific inhibitors exist, the development of novel active scaffolds with different pharmacological profiles remains a challenge. Virtual screening followed by in vitro testing is an effective means for the discovery of novel active compounds. Structure- and ligand-based pharmacophore models were created based on a dataset of known GCPII-selective ligands. These models were used in a virtual screening of the SPECS compound library (∼209.000 compounds). Fifty top-scoring virtual hits were further experimentally tested for their ability to inhibit GCPII enzymatic activity in vitro. Six hits were found to have moderate to high inhibitory potency with the best virtual hit, a modified xanthene, inhibiting GCPII with an IC50 value of 353 ± 24 nM. The identification of this novel inhibitory scaffold illustrates the applicability of pharmacophore-based modeling for the discovery of GCPII-specific inhibitors.


Asunto(s)
Glutamato Carboxipeptidasa II , Masculino , Humanos , Ligandos
5.
Arch Pharm (Weinheim) ; 356(5): e2200549, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36772878

RESUMEN

Selective cyclooxygenase (COX)-1 inhibitors can be employed as potential cardioprotective drugs. Moreover, COX-1 plays a key role in inflammatory processes and its activity is associated with some types of cancer. In this work, we designed and synthesized a set of compounds that structurally mimic the selective COX-1 inhibitors, SC-560 and mofezolac, the central cores of which were replaced either with triazole or benzene rings. The advantage of this approach is a relatively simple synthesis in comparison with the syntheses of parent compounds. The newly synthesized compounds exhibited remarkable activity and selectivity toward COX-1 in the enzymatic in vitro assay. The most potent compound, 10a (IC50 = 3 nM for COX-1 and 850 nM for COX-2), was as active as SC-560 (IC50  = 2.4 nM for COX-1 and 470 nM for COX-2) toward COX-1 and it was even more selective. The in vitro COX-1 enzymatic activity was further confirmed in the cell-based whole-blood antiplatelet assay, where three out of four selected compounds (10a,c,d, and 3b) exerted outstanding IC50 values in the nanomolar range (9-252 nM). Moreover, docking simulations were performed to reveal key interactions within the COX-1 binding pocket. Furthermore, the toxicity of the selected compounds was tested using the normal human kidney HK-2 cell line.


Asunto(s)
Antiinflamatorios no Esteroideos , Inhibidores de la Ciclooxigenasa 2 , Humanos , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Estructura Molecular , Antiinflamatorios no Esteroideos/farmacología
6.
Biochem Pharmacol ; 208: 115385, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36535528

RESUMEN

5-Lipoxygenase (LO) catalyzes the first steps in the formation of pro-inflammatory leukotrienes (LT) that are pivotal lipid mediators contributing to allergic reactions and inflammatory disorders. Based on its key role in LT biosynthesis, 5-LO is an attractive drug target, demanding for effective and selective inhibitors with efficacy in vivo, which however, are still rare. Encouraged by the recent identification of the catechol 4-(3,4-dihydroxyphenyl)dibenzofuran 1 as 5-LO inhibitor, simple structural modifications were made to yield even more effective and selective catechol derivatives. Within this new series, the two most potent compounds 3,4-dihydroxy-3'-phenoxybiphenyl (6b) and 2-(3,4-dihydroxyphenyl)benzo[b]thiophene (6d) potently inhibited human 5-LO in cell-free (IC506b and 6d = 20 nM) and cell-based assays (IC506b = 70 nM, 6d = 60 nM). Inhibition of 5-LO was reversible, unaffected by exogenously added substrate arachidonic acid, and not primarily mediated via radical scavenging and antioxidant activities. Functional 5-LO mutants expressed in HEK293 cells were still prone to inhibition by 6b and 6d, and docking simulations revealed distinct binding of the catechol moiety to 5-LO at an allosteric site. Analysis of 5-LO nuclear membrane translocation and intracellular Ca2+ mobilization revealed that these 5-LO-activating events are hardly affected by the catechols. Importantly, the high inhibitory potency of 6b and 6d was confirmed in human blood and in a murine zymosan-induced peritonitis model in vivo. Our results enclose these novel catechol derivatives as highly potent, novel type inhibitors of 5-LO with high selectivity and with marked effectiveness under pathophysiological conditions.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Inflamación , Humanos , Ratones , Animales , Araquidonato 5-Lipooxigenasa/metabolismo , Células HEK293 , Inflamación/tratamiento farmacológico , Catecoles/farmacología , Catecoles/uso terapéutico , Inhibidores de la Lipooxigenasa/farmacología , Inhibidores de la Lipooxigenasa/uso terapéutico
7.
Vet Res Commun ; 47(2): 409-419, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35727416

RESUMEN

The present study aims to find efficient alternatives to synthetic anthelmintics among ethno-veterinary herbs. Ascaridia galli eggs isolated from the worm uterus were exposed in vitro to methanolic extracts (ME) of nine plant species such as Achillea millefolium (AM), Artemisia absinthium (AA), Artemisia vulgaris (AV), Cicerbita alpina (CA), Cichorium intybus (CI), Inula helenium (IH), Origanum vulgare (OV), Tanacetum vulgare (TV), Tanacetum parthenium (TP). Flubendazole (FL), 0.5% formalin with dimethylsulfoxide and Petri dishes without the addition of reagents were used as positive, negative and untreated control respectively. The effects of the different ME at concentrations 0.500, 0.325, 0.200 mg/ml were assessed on the embryonic development (ED) of the eggs in duplicate. Logit analysis was used to calculate EC50 values. A generalized linear mixed model, having plant species and concentration as fixed effect and day as repeated measure, was used to determine differences in ED. Estimated EC50 was the lowest for FL at 0.11 mg/ml. CA and TV followed with 0.27 mg/ml and 0.32 mg/ml. ED for FL was significantly lower (25%) than that of CA (47%). The analysis showed 0.5 mg/ml of the ME of CA and TV significantly affected the ED at 35% and 42% inhibitions respectively. The ED for all ME showed similar pattern i.e., relatively higher efficacy in the first experimental week compared to the rest of the experimental period. The effect from all multicomponent extracts is time and dose dependent. The plants have promising results in inhibiting ED, contributing to the identification of alternative anthelmintic treatments.


Asunto(s)
Ascaridia , Mebendazol , Animales , Femenino , Dimetilsulfóxido , Formaldehído , Metanol
8.
Eur J Med Chem ; 243: 114788, 2022 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-36201859

RESUMEN

Oxidative stress and inflammation are two conditions that coexist in many multifactorial diseases and the discovery of antioxidants is an attractive approach that can simultaneously tackle two or more therapeutic targets of the arachidonic acid cascade. We report that the simple structural variations on the 4-aryl-benzene-1,2-diol side-arm of the scaffold significantly influence the selectivity against 5-LOX vs 12- and 15-LOX. Derivatives 4 a-l were evaluated for their antioxidant activity, using the DPPH, and ferric ion reducing antioxidant power (FRAP) methods. Docking simulations proposed concrete binding of the catechol series to 5-LO. Selected active compound 4-(3,4-dihydroxyphenyl)dibenzofuran (4l) was also tested in different in vivo mouse models of inflammation. 4l (0.1 mg/kg; i.p.) impaired (I) bronchoconstriction in ovalbumin-sensitized mice challenged with acetylcholine, (II) exudate formation in carrageenan-induced paw edema, and (III) zymosan-induced leukocyte infiltration in air pouches. These results pave the way for investigating the therapeutic potential of 4-aryl-benzene-1,2-diol, as novel multitarget therapeutic drugs, able to regulate the complex inflammatory cascade mechanisms.


Asunto(s)
Benceno , Inhibidores de la Lipooxigenasa , Ratones , Animales , Inhibidores de la Lipooxigenasa/farmacología , Benceno/uso terapéutico , Edema/inducido químicamente , Edema/tratamiento farmacológico , Carragenina , Inflamación/tratamiento farmacológico , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Catecoles/farmacología
9.
J Enzyme Inhib Med Chem ; 37(1): 1752-1764, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36124840

RESUMEN

A series of derivatives of the potent dual soluble epoxide hydrolase (sEH)/5-lipoxygenase-activating protein (FLAP) inhibitor diflapolin was designed, synthesised, and characterised. These novel compounds, which contain a benzimidazole subunit were evaluated for their inhibitory activity against sEH and FLAP. Molecular modelling tools were applied to analyse structure-activity relationships (SAR) on both targets and to predict solubility and gastrointestinal (GI) absorption. The most promising dual inhibitors of these series are 5a, 6b, and 6c.


Asunto(s)
Bencimidazoles , Epóxido Hidrolasas , Proteínas Activadoras de la 5-Lipooxigenasa/metabolismo , Bencimidazoles/farmacología , Inhibidores Enzimáticos/farmacología , Inhibidores de la Lipooxigenasa/farmacología , Relación Estructura-Actividad
10.
Biochem Pharmacol ; 203: 115202, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35932797

RESUMEN

Polypharmacological targeting of lipid mediator networks offers potential for efficient and safe anti-inflammatory therapy. Because of the diversity of its biological targets, curcumin (1a) has been viewed as a privileged structure for bioactivity or, alternatively, as a pan-assay interference (PAIN) compound. Curcumin has actually few high-affinity targets, the most remarkable ones being 5-lipoxygenase (5-LOX) and microsomal prostaglandin E2 synthase (mPGES)-1. These enzymes are critical for the production of pro-inflammatory leukotrienes and prostaglandin (PG)E2, and previous structure-activity-relationship studies in this area have focused on the enolized 1,3-diketone motif, the alkyl-linker and the aryl-moieties, neglecting the rotational state of curcumin, which can adopt twisted conformations in solution and at target sites. To explore how the conformation of curcuminoids impacts 5-LOX and mPGES-1 inhibition, we have synthesized rotationally constrained analogues of the natural product and its pyrazole analogue by alkylation of the linker and/or of the ortho aromatic position(s). These modifications strongly impacted 5-LOX and mPGES-1 inhibition and their systematic analysis led to the identification of potent and selective 5-LOX (3b, IC50 = 0.038 µM, 44.7-fold selectivity over mPGES-1) and mPGES-1 inhibitors (2f, IC50 = 0.11 µM, 4.6-fold selectivity over 5-LOX). Molecular docking experiments suggest that the C2-methylated pyrazolocurcuminoid 3b targets an allosteric binding site at the interface between catalytic and regulatory 5-LOX domain, while the o, o'-dimethylated desmethoxycurcumin 2f likely binds between two monomers of the trimeric mPGES-1 structure. Both compounds trigger a lipid mediator class switch from pro-inflammatory leukotrienes to PG and specialized pro-resolving lipid mediators in activated human macrophages.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Curcumina , Prostaglandina-E Sintasas/antagonistas & inhibidores , Araquidonato 5-Lipooxigenasa/metabolismo , Constricción , Curcumina/metabolismo , Diarilheptanoides/metabolismo , Eicosanoides/metabolismo , Humanos , Leucotrienos , Inhibidores de la Lipooxigenasa/farmacología , Macrófagos/metabolismo , Simulación del Acoplamiento Molecular , Prostaglandina-E Sintasas/metabolismo , Prostaglandinas/metabolismo
11.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889317

RESUMEN

Diseases of the central nervous system are an alarming global problem showing an increasing prevalence. Dopamine receptor D2 (D2R) has been shown to be involved in central nervous system diseases. While different D2R-targeting drugs have been approved by the FDA, they all suffer from major drawbacks due to promiscuous receptor activity leading to adverse effects. Increasing the number of potential D2R-targeting drug candidates bears the possibility of discovering molecules with less severe side-effect profiles. In dire need of novel D2R ligands for drug development, combined in silico/in vitro approaches have been shown to be efficient strategies. In this study, in silico pharmacophore models were generated utilizing both ligand- and structure-based approaches. Subsequently, different databases were screened for novel D2R ligands. Selected virtual hits were investigated in vitro, quantifying their binding affinity towards D2R. This workflow successfully identified six novel D2R ligands exerting micro- to nanomolar (most active compound KI = 4.1 nM) activities. Thus, the four pharmacophore models showed prospective true-positive hit rates in between 4.5% and 12%. The developed workflow and identified ligands could aid in developing novel drug candidates for D2R-associated pathologies.


Asunto(s)
Dopamina , Receptores de Dopamina D2 , Simulación por Computador , Ligandos , Estudios Prospectivos , Receptores de Dopamina D2/metabolismo
12.
Metabolites ; 12(2)2022 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35208174

RESUMEN

Naturally occurring substances are valuable resources for drug development. In this respect, chalcones are known to be antiproliferative agents against prostate cancer cell lines through various mechanisms or targets. Based on the literature and preliminary results, we aimed to study and optimise the efficiency of a series of chalcones to inhibit androgen-converting AKR1C3, known to promote prostate cancer. A total of 12 chalcones with different substitution patterns were synthesised. Structure-activity relationships associated with these modifications on AKR1C3 inhibition were analysed by performing enzymatic assays and docking simulations. In addition, the selectivity and cytotoxicity of the compounds were assessed. In enzymatic assays, C-6' hydroxylated derivatives were more active than C-6' methoxylated derivatives. In contrast, C-4 methylation increased activity over C-4 hydroxylation. Docking results supported these findings with the most active compounds fitting nicely in the binding site and exhibiting strong interactions with key amino acid residues. The most effective inhibitors were not cytotoxic for HEK293T cells and selective for 17ß-hydroxysteroid dehydrogenases not primarily involved in steroid hormone metabolism. Nevertheless, they inhibited several enzymes of the steroid metabolism pathways. Favourable substitutions that enhanced AKR1C3 inhibition of chalcones were identified. This study paves the way to further develop compounds from this series or related flavonoids with improved inhibitory activity against AKR1C3.

13.
Biochem Pharmacol ; 195: 114825, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34762841

RESUMEN

Specialized pro-resolving mediators (SPMs) comprise lipid mediators (LMs) produced from polyunsaturated fatty acids (PUFAs) via stereoselective oxygenation particularly involving 12/15-lipoxygenases (LOXs). In contrast to pro-inflammatory LMs such as leukotrienes formed by 5-LOX and prostaglandins formed by cyclooxygenases, the SPMs have anti-inflammatory and inflammation-resolving properties. Although glucocorticoids and non-steroidal anti-inflammatory drugs (NSAIDs) that block prostaglandin production are still prime therapeutics for inflammation-related diseases despite severe side effects, novel concepts focus on SPMs as immunoresolvents for anti-inflammatory pharmacotherapy. Here, we studied the natural chalcone MF-14 and the corresponding dihydrochalcone MF-15 from Melodorum fruticosum, for modulating the biosynthesis of LM including leukotrienes, prostaglandins, SPM and their 12/15-LOX-derived precursors in human monocyte-derived macrophage (MDM) M1- and M2-like phenotypes. In MDM challenged with Staphylococcus aureus-derived exotoxins both compounds (10 µM) significantly suppressed 5-LOX product formation but increased the biosynthesis of 12/15-LOX products, especially in M2-MDM. Intriguingly, in resting M2-MDM, MF-14 and MF-15 strikingly evoked generation of 12/15-LOX products and of SPMs from liberated PUFAs, along with translocation of 15-LOX-1 to membranous compartments. Enhanced 12/15-LOX product formation by the chalcones was evident also when exogenous PUFAs were supplied, excluding increased substrate supply as sole underlying mechanism. Rather, MF-14 and MF-15 stimulate the activity of 15-LOX-1, supported by experiments with HEK293 cells transfected with either 5-LOX, 15-LOX-1 or 15-LOX-2. Together, the natural chalcone MF-14 and the dihydrochalcone MF-15 favorably modulate LM biosynthesis in human macrophages by suppressing pro-inflammatory leukotrienes but stimulating formation of SPMs by differential interference with 5-LOX and 15-LOX-1.


Asunto(s)
Araquidonato 12-Lipooxigenasa/metabolismo , Araquidonato 15-Lipooxigenasa/metabolismo , Chalcona/farmacología , Leucotrienos/metabolismo , Macrófagos/efectos de los fármacos , Prostaglandinas/metabolismo , Adulto , Annonaceae/química , Araquidonato 12-Lipooxigenasa/genética , Araquidonato 15-Lipooxigenasa/genética , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Chalcona/química , Chalconas/química , Chalconas/farmacología , Células HEK293 , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/clasificación , Macrófagos/metabolismo , Estructura Molecular , Extractos Vegetales/farmacología
14.
Eur J Med Chem ; 227: 113947, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-34731766

RESUMEN

Triterpenoic acids (oleanolic, ursolic, betulinic, platanic and glycyrrhetinic acid) were acetylated and coupled with 1,3- or 1,4-diazabicyclo[3.2.2]nonanes to yield amides. Reaction of these amides with methyl iodide at the distal nitrogen of the bicyclic system gave the corresponding quaternary ammonium salts. These compounds were shown to act as excellent inhibitors of the enzyme butyrylcholinesterase (BChE) while being only weak inhibitors for acetylcholinesterase (AChE). Evaluation of the enzyme kinetics revealed these compounds to act as hyperbolic inhibitors for BChE while the results from molecular modeling gave an explanation for their selectivity between AChE and BChE.


Asunto(s)
Compuestos Aza/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/farmacología , Triterpenos/farmacología , Acetilcolinesterasa/metabolismo , Animales , Compuestos Aza/química , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Relación Dosis-Respuesta a Droga , Electrophorus , Humanos , Metilación , Estructura Molecular , Relación Estructura-Actividad , Torpedo , Triterpenos/síntesis química , Triterpenos/química
15.
Plants (Basel) ; 10(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34834886

RESUMEN

Dermatophyte infections represent a significant public health concern, with an alarming negative impact caused by unsuccessful therapeutic regimens. Natural products have been highlighted as a promising alternative, due to their long-standing traditional use and increasing scientific recognition. In this study, honokiol and magnolol, the main bioactives from Magnolia spp. bark, were investigated for their antidermatophytic activity. The antifungal screening was performed using dermatophyte standard strains and clinical isolates. The minimal inhibitory concentration (MIC) and the minimal fungicidal concentration (MFC) were determined in accordance with EUCAST-AFST guidelines, with minor modifications. The effects on ergosterol biosynthesis were assessed in Trichophyton rubrum cells by HPLC-DAD. Putative interactions with terbinafine against T. rubrum were evaluated by the checkerboard method. Their impact on cells' viability and pro-inflammatory cytokines (IL-1ß, IL-8 and TNF-α) was shown using an ex vivo human neutrophils model. Honokiol and magnolol were highly active against tested dermatophytes, with MIC and MFC values of 8 and 16 mg/L, respectively. The mechanism of action involved the inhibition of ergosterol biosynthesis, with accumulation of squalene in T. rubrum cells. Synergy was assessed for binary mixtures of magnolol with terbinafine (FICI = 0.50), while honokiol-terbinafine combinations displayed only additive effects (FICI = 0.56). In addition, magnolol displayed inhibitory effects towards IL-1ß, IL-8 and TNF-α released from lipopolysaccharide (LPS)-stimulated human neutrophils, while honokiol only decreased IL-1ß secretion, compared to the untreated control. Overall, honokiol and magnolol acted as fungicidal agents against dermatophytes, with impairment of ergosterol biosynthesis.

16.
Molecules ; 26(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34576918

RESUMEN

Opioid analgesics are clinically used to relieve severe pain in acute postoperative and cancer pain, and also in the long term in chronic pain. The analgesic action is mediated by µ-, δ-, and κ-receptors, but currently, with few exceptions for k-agonists, µ-agonists are the only ones used in therapy. Previously synthesized compounds with diazotricyclodecane cores (DTDs) have shown their effectiveness in binding opioid receptors. Fourteen novel diazatricyclodecanes belonging to the 9-propionyl-10-substituted-9,10-diazatricyclo[4.2.1.12,5]decane (compounds 20-23, 53, 57 and 59) and 2-propionyl-7-substituted-2,7-diazatricyclo[4.4.0.03,8]decane (compounds 24-27, 54, 58 and 60) series, respectively, have been synthesized and their ability to bind to the opioid µ-, δ- and κ-receptors was evaluated. Five of these derivatives, compounds 20, 21, 24, 26 and 53, showed µ-affinity in the nanomolar range with a negligible affinity towards δ- and κ-receptors and high µ-receptor selectivity. The synthesized compounds showed µ-receptor selectivity higher than those of previously reported methylarylcinnamyl analogs.


Asunto(s)
Receptores Opioides , Analgésicos , Modelos Moleculares
17.
Acta Pharm Sin B ; 11(6): 1629-1647, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34221873

RESUMEN

Chronic inflammation results from excessive pro-inflammatory signaling and the failure to resolve the inflammatory reaction. Lipid mediators orchestrate both the initiation and resolution of inflammation. Switching from pro-inflammatory to pro-resolving lipid mediator biosynthesis is considered as efficient strategy to relieve chronic inflammation, though drug candidates exhibiting such features are unknown. Starting from a library of Vietnamese medical plant extracts, we identified isomers of the biflavanoid 8-methylsocotrin-4'-ol from Dracaena cambodiana, which limit inflammation by targeting 5-lipoxygenase and switching the lipid mediator profile from leukotrienes to specialized pro-resolving mediators (SPM). Elucidation of the absolute configurations of 8-methylsocotrin-4'-ol revealed the 2S,γS-isomer being most active, and molecular docking studies suggest that the compound binds to an allosteric site between the 5-lipoxygenase subdomains. We identified additional subordinate targets within lipid mediator biosynthesis, including microsomal prostaglandin E2 synthase-1. Leukotriene production is efficiently suppressed in activated human neutrophils, macrophages, and blood, while the induction of SPM biosynthesis is restricted to M2 macrophages. The shift from leukotrienes to SPM was also evident in mouse peritonitis in vivo and accompanied by a substantial decrease in immune cell infiltration. In summary, we disclose a promising drug candidate that combines potent 5-lipoxygenase inhibition with the favorable reprogramming of lipid mediator profiles.

18.
J Med Chem ; 64(15): 11496-11526, 2021 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-34279935

RESUMEN

Endogenous long-chain metabolites of vitamin E (LCMs) mediate immune functions by targeting 5-lipoxygenase (5-LOX) and increasing the systemic concentrations of resolvin E3, a specialized proresolving lipid mediator. SAR studies on semisynthesized analogues highlight α-amplexichromanol (27a), which allosterically inhibits 5-LOX, being considerably more potent than endogenous LCMs in human primary immune cells and blood. Other enzymes within lipid mediator biosynthesis were not substantially inhibited, except for microsomal prostaglandin E2 synthase-1. Compound 27a is metabolized by sulfation and ß-oxidation in human liver-on-chips and exhibits superior metabolic stability in mice over LCMs. Pharmacokinetic studies show distribution of 27a from plasma to the inflamed peritoneal cavity and lung. In parallel, 5-LOX-derived leukotriene levels decrease, and the inflammatory reaction is suppressed in reconstructed human epidermis, murine peritonitis, and experimental asthma in mice. Our study highlights 27a as an orally active, LCM-inspired drug candidate that limits inflammation with superior potency and metabolic stability to the endogenous lead.


Asunto(s)
Araquidonato 5-Lipooxigenasa/metabolismo , Descubrimiento de Drogas , Inflamación/tratamiento farmacológico , Inhibidores de la Lipooxigenasa/farmacología , Vitamina E/farmacología , Administración Oral , Araquidonato 5-Lipooxigenasa/genética , Relación Dosis-Respuesta a Droga , Humanos , Inflamación/metabolismo , Inhibidores de la Lipooxigenasa/administración & dosificación , Inhibidores de la Lipooxigenasa/metabolismo , Simulación del Acoplamiento Molecular , Estructura Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relación Estructura-Actividad , Vitamina E/administración & dosificación , Vitamina E/metabolismo
19.
ACS Med Chem Lett ; 12(4): 610-616, 2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33854702

RESUMEN

Selective cyclooxygenase-1 (COX-1) inhibition has got into the spotlight with the discovery of COX-1 upregulation in various cancers and the cardioprotective role of COX-1 in control of thrombocyte aggregation. Yet, COX-1-selective inhibitors are poorly explored. Thus, three series of quinazoline derivatives were prepared and tested for their potential inhibitory activity toward COX-1 and COX-2. Of the prepared compounds, 11 exhibited interesting COX-1 selectivity, with 8 compounds being totally COX-1-selective. The IC50 value of the best quinazoline inhibitor was 64 nM. The structural features ensuring COX-1 selectivity were elucidated using in silico modeling.

20.
Comput Struct Biotechnol J ; 19: 1431-1444, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777339

RESUMEN

In silico methods like molecular docking and pharmacophore modeling are established strategies in lead identification. Their successful application for finding new active molecules for a target is reported by a plethora of studies. However, once a potential lead is identified, lead optimization, with the focus on improving potency, selectivity, or pharmacokinetic parameters of a parent compound, is a much more complex task. Even though in silico molecular modeling methods could contribute a lot of time and cost-saving by rationally filtering synthetic optimization options, they are employed less widely in this stage of research. In this review, we highlight studies that have successfully used computer-aided SAR analysis in lead optimization and want to showcase sound methodology and easily accessible in silico tools for this purpose.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...