Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Metabolism ; 141: 155399, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36642114

RESUMEN

BACKGROUND: Production rates of the short-chain fatty acids (SCFA) acetate, propionate, and butyrate, which are beneficial metabolites of the intestinal microbiota, are difficult to measure in humans due to inaccessibility of the intestine to perform measurements, and the high first-pass metabolism of SCFAs in colonocytes and liver. We developed a stable tracer pulse approach to estimate SCFA whole-body production (WBP) in the accessible pool representing the systemic circulation and interstitial fluid. Compartmental modeling of plasma enrichment data allowed us to additionally calculate SCFA kinetics and pool sizes in the inaccessible pool likely representing the intestine with microbiota. We also studied the effects of aging and the presence of Chronic Obstructive Pulmonary Disease (COPD) on SCFA kinetics. METHODS: In this observational study, we designed a two-compartmental model to determine SCFA kinetics in 31 young (20-29 y) and 71 older (55-87 y) adults, as well as in 33 clinically stable patients with moderate to very severe COPD (mean (SD) FEV1, 46.5 (16.2)% of predicted). Participants received in the fasted state a pulse containing stable tracers of acetate, propionate, and butyrate intravenously and blood was sampled four times over a 30 min period. We measured tracer-tracee ratios by GC-MS and used parameters obtained from two-exponential curve fitting to calculate non-compartmental SCFA WBP and perform compartmental analysis. Statistics were done by ANCOVA. RESULTS: Acetate, propionate, and butyrate WBP and fluxes between the accessible and inaccessible pools were lower in older than young adults (all q < 0.0001). Moreover, older participants had lower acetate (q < 0.0001) and propionate (q = 0.019) production rates in the inaccessible pool as well as smaller sizes of the accessible and inaccessible acetate pools (both q < 0.0001) than young participants. WBP, compartmental SCFA kinetics, and pool sizes did not differ between COPD patients and older adults (all q > 0.05). Overall and independent of the group studied, calculated production rates in the inaccessible pool were on average 7 (acetate), 11 (propionate), and 16 (butyrate) times higher than non-compartmental WBP, and sizes of inaccessible pools were 24 (acetate), 31 (propionate), and 55 (butyrate) times higher than sizes of accessible pools (all p < 0.0001). CONCLUSION: Non-compartmental production measurements of SCFAs in the accessible pool (i.e. systemic circulation) substantially underestimate the SCFA production in the inaccessible pool, which likely represents the intestine with microbiota, as assessed by compartmental analysis.


Asunto(s)
Ácidos Grasos Volátiles , Propionatos , Adulto Joven , Humanos , Anciano , Acetatos/metabolismo , Butiratos , Envejecimiento
2.
Metabolism ; 142: 155400, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36717057

RESUMEN

BACKGROUND: The trajectory from healthy to critical illness is influenced by numerous factors, including metabolism, which differs substantially between males and females. Whole body protein breakdown is substantially increased in critically ill patients, but it remains unclear whether there are sex differences that could explain the different health outcomes. Hence, we performed a secondary analysis of a study, where we used a novel pulse isotope method in critically ill and matched healthy males and females. METHODS: In 51 critically ill ICU patients (26 males, 15 females) and 49 healthy controls (36 males and 27 females), we assessed their general and disease characteristics and collected arterial(ized) blood in the postabsorptive state after pulse administration of 8 ml of a solution containing 18 stable AA tracers. In contrast to the original study, we now fitted the decay curves and calculated non-compartmental whole body amino acid production (WBP) and compartmental measurements of metabolism, including intracellular amino acid production. We measured amino acid enrichments and concentrations by LC-MS/MS and derived statistics using AN(C)OVA. RESULTS: Critically ill males and females showed an increase in the WBP of many amino acids, including those related to protein breakdown, but females showed greater elevations, or in the event of a reduction, attenuated reductions. Protein breakdown-independent WBP differences remained between males and females, notably increased glutamine and glutamate WBP. Only severely ill females showed a lower increase in WBP of many amino acids in comparison to moderately ill females, suggesting a suppressed metabolism. Compartmental analysis supported the observations. CONCLUSIONS: The present study shows that females have a different response to critical illness in the production of several amino acids and changes in protein breakdown, observations made possible using our innovative stable tracer pulse approach. CLINICAL TRIAL REGISTRY: Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).


Asunto(s)
Aminoácidos , Enfermedad Crítica , Femenino , Humanos , Masculino , Aminoácidos/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem
3.
Am J Clin Nutr ; 116(6): 1610-1620, 2022 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-36166849

RESUMEN

BACKGROUND: There is growing interest in the supplementation of arginine (Arg) and citrulline (Cit) in obesity due to their potential anti-obesogenic and anti-inflammatory properties. However, there is no consensus on the metabolic changes in Arg kinetics in obesity. OBJECTIVES: This exploratory cross-sectional study aimed to investigate the association between obesity, sex, and sex-by-obesity interaction on whole-body Arg kinetics in a large group of human subjects. METHODS: We studied 83 nonobese [BMI (kg/m2) <30] and 80 morbidly obese (BMI >30) middle-aged individuals (40% males) enrolled in the MEDIT (Metabolism of Disease with Isotope Tracers) trial. After body-composition measurement by DXA, we collected arterial(ized) blood samples for amino acid (AA) concentrations, markers of inflammation [high-sensitivity C-reactive protein (hs-CRP)], liver function, and glucose in a postabsorptive state. We administered a pulse of AA stable tracers and measured whole-body production (WBP) of Arg, Cit, ornithine (Orn), phenylalanine, and tyrosine, and calculated their clearance (disposal capacity) and metabolite interconversions [markers for NO and de novo Arg production, systemic Arg hydrolysis, and whole-body protein breakdown (wbPB)]. We measured plasma enrichments by LC-MS/MS and statistics by Fisher's exact test or analysis of (co)variance. Significance was set at P < 0.05. RESULTS: Obese individuals were normoglycemic and characterized by low-grade inflammation (P < 0.0001) and greater wbPB (P = 0.0298). We found lower plasma Cit concentration (P < 0.0001) in the obese group but no differences in the WBP of Arg, Cit, and Orn. Furthermore, we observed overproduction of NO (P < 0.0001) in obesity but lower de novo Arg production (P = 0.0007). The WBP of Arg was lower in females for almost all Arg-related AAs, except for plasma Cit and NO production. CONCLUSIONS: Alterations in Arg metabolism are present in morbid obesity. Further studies are needed to investigate if these changes could be related to factors such as increased Arg requirement in obesity or metabolic adaptation.


Asunto(s)
Arginina , Obesidad Mórbida , Femenino , Humanos , Masculino , Persona de Mediana Edad , Cromatografía Liquida , Citrulina , Estudios Transversales , Inflamación , Óxido Nítrico , Espectrometría de Masas en Tándem
4.
Curr Opin Clin Nutr Metab Care ; 25(1): 43-49, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34798641

RESUMEN

PURPOSE OF REVIEW: The branched-chain amino acids (BCAA), branched-chain keto acids (BCKA), and ß-hydroxy ß-methylbutyric acid (HMB) have regained interest as food ingredients in health and disease. To support nutritional strategies, it is critical to gain insight into the whole body and transorgan kinetics of these components. We, therefore, reviewed the most recent literature in this field on in vivo analysis of BCAA, BCKA, and HMB kinetics in health and disease. RECENT FINDINGS: With a new comprehensive metabolic flux analysis BCAA, BCKA, and HMB whole body production, interconversion and disposal rates can be measured simultaneously. Recent studies have provided us with a better understanding of whole-body and transorgan kinetics under postabsorptive, postprandial, hibernating, and lactating conditions. In human pathophysiological conditions like COPD, obesity, and diabetes, the added value of BCAA kinetic measurements over the commonly used concentration measurements only, is discussed. SUMMARY: This article highlights the importance of implementing BCAA, BCKA, and HMB kinetic studies to further advance the field by gaining more mechanistic insights and providing direction to the development of new targeted (nutritional) strategies.


Asunto(s)
Aminoácidos de Cadena Ramificada , Cetoácidos , Femenino , Humanos , Hidroxiácidos , Cinética , Lactancia
5.
Am J Physiol Endocrinol Metab ; 321(5): E665-E673, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605248

RESUMEN

The short-chain fatty acids (SCFAs) acetate, propionate, butyrate, isovalerate, and valerate are end products of intestinal bacterial fermentation and important mediators in the interplay between the intestine and peripheral organs. To unravel the transorgan fluxes and mass balance comparisons of SCFAs, we measured their net fluxes across several organs in a translational pig model. In multicatheterized conscious pigs [n = 12, 25.6 (95% CI [24.2, 26.9]) kg, 8-12 wk old], SCFA fluxes across portal-drained viscera (PDV), liver, kidneys, and hindquarter (muscle compartment) were measured after an overnight fast and in the postprandial state, 4 h after administration of a fiber-free, mixed meal. PDV was the main releasing compartment of acetate, propionate, butyrate, isovalerate, and valerate during fasting and in the postprandial state (all P = 0.001). Splanchnic acetate release was high due to the absence of hepatic clearance. All other SCFAs were extensively taken up by the liver (all P < 0.05). Even though only 7% [4, 10] (propionate), 42% [23, 60] (butyrate), 26% [12, 39] (isovalerate), and 3% [0.4, 5] (valerate) of PDV release were excreted from the splanchnic area in the fasted state, splanchnic release of all SCFAs was significant (all P values ≤0.01). Splanchnic propionate, butyrate, isovalerate, and valerate release remained low but significant in the postprandial state (all P values <0.01). We identified muscle and kidneys as main peripheral SCFA metabolizing organs, taking up the majority of all splanchnically released SCFAs in the fasted state and in the postprandial state. We conclude that the PDV is the main SCFA releasing and the liver the main SCFA metabolizing organ. Splanchnically released SCFAs appear to be important energy substrates to peripheral organs not only in the fasted but also in the postprandial state.NEW & NOTEWORTHY Using a multicatheterized pig model, we identified the portal-drained viscera as the main releasing compartment of the short-chain fatty acids acetate, propionate, butyrate, isovalerate, and valerate in the fasted and postprandial states. Low hepatic acetate metabolism resulted in a high splanchnic release, whereas all other SCFAs were extensively cleared resulting in low but significant splanchnic releases. Muscle and kidneys are the main peripheral SCFA metabolizing organs during fasting and in the postprandial state.


Asunto(s)
Ayuno/fisiología , Ácidos Grasos Volátiles/metabolismo , Periodo Posprandial/fisiología , Animales , Cateterismo , Fibras de la Dieta/farmacología , Metabolismo Energético/fisiología , Femenino , Riñón/metabolismo , Músculo Esquelético/metabolismo , Flujo Sanguíneo Regional , Porcinos
6.
Clin Nutr ; 40(8): 4878-4887, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34358832

RESUMEN

PURPOSE: Muscle wasting deteriorates life quality after critical illness and increases mortality. Wasting starts upon admission to intensive care unit (ICU). We aimed to determine whether ß-hydroxy-ß-methylbutyrate (HMB), a metabolite of leucine, can attenuate this process. METHODS: Prospective randomized, placebo-controlled double blind trial. INCLUSION CRITERIA: ICU patients depending on mechanical ventilation on day 3 having a functional gastrointestinal tract. They were randomized to HMB (3 g/day) or placebo (maltodextrin) from day 4 on for 30 days. PRIMARY OUTCOME: magnitude of loss of skeletal muscle area (SMA) of the quadriceps femoris measured by ultrasound at days 4 and 15. SECONDARY OUTCOMES: body composition, change in protein metabolism assessed by amino acids tracer pulse, and global health at 60 days. Data are mean [95% CI]. Statistics by ANCOVA with correction for confounders sex, age and/or BMI. RESULTS: Thirty patients completed the trial, aged 65 [59, 71] years, SAPS2 score 48 [43, 52] and SOFA 8.5 [7.4, 9.7]. The loss of total SMA was 11% between days 4 and 15 (p < 0.001), but not different between the groups (p = 0.86). In the HMB group, net protein breakdown (Δ Estimate HMB-Placebo: -153 [-242, -63]; p = 0.0021) and production of several amino acid was significantly reduced, while phase angle increased more (0.66 [0.09, 1.24]; p = 0.0247), and SF-12 global health improved more (Δ Estimate HMB-Placebo: 27.39 [1.594, 53.19], p = 0.04). CONCLUSION: HMB treatment did not significantly reduce muscle wasting over 10 days of observation (primary endpoint), but resulted in significantly improved amino acid metabolism, reduced net protein breakdown, a higher phase angle and better global health. CLINICALTRIALS. GOV IDENTIFIER: NCT03628365.


Asunto(s)
Aminoácidos/efectos de los fármacos , Suplementos Dietéticos , Atrofia Muscular/prevención & control , Valeratos/administración & dosificación , Anciano , Aminoácidos/sangre , Composición Corporal , Enfermedad Crítica/terapia , Método Doble Ciego , Impedancia Eléctrica , Nutrición Enteral , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , Persona de Mediana Edad , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/fisiopatología , Atrofia Muscular/etiología , Puntuaciones en la Disfunción de Órganos , Estudios Prospectivos , Músculo Cuádriceps/diagnóstico por imagen , Músculo Cuádriceps/fisiopatología , Ultrasonografía/métodos
7.
Clin Nutr ; 40(5): 2876-2897, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33946038

RESUMEN

Amino acid (AA) metabolism is severely disturbed in critically ill ICU patients. To be able to make a more scientifically based decision on the type of protein or AA nutrition to deliver in ICU patients, comprehensive AA phenotyping with measurements of plasma concentrations and whole body production (WBP) is needed. Therefore, we studied ICU patients and matched control subjects using a novel pulse isotope method to obtain in-depth metabolic analysis. In 51 critically ill ICU patients (SOFA~6.6) and 49 healthy controls, we measured REE and body composition/phase-angle using BIA. In the postabsorptive state, we collected arterial (ized) blood for CRP and AA. Then, we administered an 8 mL solution containing 18 stable AA tracers as a pulse and calculated WBP. Enrichments: LC-MS/MS and statistics: t-test, ANCOVA. Compared to healthy, critically ill ICU patients had lower phase-angle (p < 0.00001), and higher CRP (p < 0.0001). Most AA concentrations were lower in ICU patients (p < 0.0001), except tau-methylhistidine and phenylalanine. WBP of most AA were significantly (p < 0.0001) higher with increases in glutamate (160%), glutamine (46%), and essential AA. Remarkably, net protein breakdown was lower. There were only weak relationships between AA concentrations and WBP. Critically ill ICU patients (SOFA 8-16) had lower values for phase angle (p = 0.0005) and small reductions of most plasma AA concentrations, but higher tau-methylhistidine (p = 0.0223) and hydroxyproline (p = 0.0028). Remarkably, the WBP of glutamate and glutamine were lower (p < 0.05), as was their clearance, but WBP of tau-methylhistidine (p = 0.0215) and hydroxyproline (p = 0.0028) were higher. Our study in critically ill ICU patients shows that comprehensive metabolic phenotyping was able to reveal severe disturbances in specific AA pathways, in a disease severity dependent way. This information may guide improving nutritional compositions to improve the health of the critically ill patient. CLINICAL TRIAL REGISTRY: Data are from the baseline measurements of study NCT02770092 (URL: https://clinicaltrials.gov/ct2/show/NCT02770092) and NCT03628365 (URL: https://clinicaltrials.gov/ct2/show/NCT03628365).


Asunto(s)
Aminoácidos/sangre , Composición Corporal/fisiología , Anciano , Metabolismo Basal/fisiología , Enfermedad Crítica , Impedancia Eléctrica , Femenino , Humanos , Masculino , Persona de Mediana Edad
8.
PLoS One ; 16(2): e0248081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33630961

RESUMEN

[This corrects the article DOI: 10.1371/journal.pone.0242926.].

9.
Am J Physiol Endocrinol Metab ; 320(3): E629-E640, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33522397

RESUMEN

Branched-chain amino acids (BCAA) and their metabolites the branched-chain keto acids (BCKA) and ß-hydroxy ß-methylbutyric acid (HMB) are involved in the regulation of key signaling pathways in the anabolic response to a meal. However, their (inter)organ kinetics remain unclear. Therefore, branched-chain amino acids (BCAA) [leucine (Leu), valine (Val), isoleucine (Ile)], BCKA [α-ketoisocaproic acid (KIC), 3-methyl-2-oxovaleric acid (KMV), 2-oxoisovalerate (KIV)], and HMB across organ net fluxes were measured. In multi-catheterized pigs (n = 12, ±25 kg), net fluxes across liver, portal drained viscera (PDV), kidney, and hindquarter (HQ, muscle compartment) were measured before and 4 h after bolus feeding of a complete meal (30% daily intake) in conscious state. Arterial and venous plasma were collected and concentrations were measured by LC- or GC-MS/MS. Data are expressed as mean [95% CI] and significance (P < 0.05) from zero by the Wilcoxon Signed Rank Test. In the postabsorptive state (in nmol/kg body wt/min), the kidney takes up HMB (3.2[1.3,5.0]) . BCKA is taken up by PDV (144[13,216]) but no release by other organs. In the postprandial state, the total net fluxes over 4 h (in µmol/kg body wt/4 h) showed a release of all BCKA by HQ (46.2[34.2,58.2]), KIC by the PDV (12.3[7.0,17.6]), and KIV by the kidney (10.0[2.3,178]). HMB was released by the liver (0.76[0.49,1.0]). All BCKA were taken up by the liver (200[133,268]). Substantial differences are present in (inter)organ metabolism and transport among the BCAA and its metabolites BCKA and HMB. The presented data in a translation animal model are relevant for the future development of optimized clinical nutrition.NEW & NOTEWORTHY Branched-chain amino acids (BCAA) and their metabolites the branched-chain keto acids (BCKA) and ß-hydroxy ß-methylbutyric acid (HMB) are involved in the regulation of key signaling pathways in the anabolic response to a meal. Substantial differences are present in (inter)organ metabolism and transport among the BCAA and its metabolites BCKA and HMB. The presented data in a translation animal model are relevant for the future development of optimized clinical nutrition.


Asunto(s)
Aminoácidos de Cadena Ramificada/farmacocinética , Cetoácidos/farmacocinética , Análisis de Flujos Metabólicos , Animales , Femenino , Hemiterpenos/farmacocinética , Riñón/metabolismo , Leucina/farmacocinética , Hígado/metabolismo , Análisis de Flujos Metabólicos/veterinaria , Redes y Vías Metabólicas/fisiología , Músculo Esquelético/metabolismo , Porcinos , Distribución Tisular , Valeratos/farmacocinética , Vísceras/metabolismo
10.
Nat Metab ; 2(12): 1459-1471, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33288952

RESUMEN

Hibernation is a state of extraordinary metabolic plasticity. The pathways of amino acid metabolism as they relate to nitrogen homeostasis in hibernating mammals in vivo are unknown. Here we show, using pulse isotopic tracing, evidence of increased myofibrillar (skeletal muscle) protein breakdown and suppressed whole-body production of metabolites in vivo throughout deep torpor. As whole-body production of metabolites is suppressed, amino acids with nitrogenous side chains accumulate during torpor, while urea cycle intermediates do not. Using 15N stable isotope methodology in arctic ground squirrels (Urocitellus parryii), we provide evidence that free nitrogen is buffered and recycled into essential amino acids, non-essential amino acids and the gamma-glutamyl system during the inter-bout arousal period of hibernation. In the absence of nutrient intake or physical activity, our data illustrate the orchestration of metabolic pathways that sustain the provision of essential and non-essential amino acids and prevent ammonia toxicity during hibernation.


Asunto(s)
Amoníaco/toxicidad , Hibernación/fisiología , Músculo Esquelético/fisiología , Nitrógeno/metabolismo , Sciuridae/fisiología , Aminoácidos/metabolismo , Animales , Regiones Árticas , Nivel de Alerta , Riñón/metabolismo , Miofibrillas/metabolismo , Letargo/fisiología , Urea/metabolismo , gamma-Glutamil Hidrolasa/metabolismo
11.
PLoS One ; 15(11): e0242926, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33253250

RESUMEN

With the rise in physical inactivity and its related diseases, it is necessary to understand the mechanisms involved in physical activity regulation. Biological factors regulating physical activity are studied to establish a possible target for improving the physical activity level. However, little is known about the role metabolism plays in physical activity regulation. Therefore, we studied protein fractional synthesis rate (FSR) of multiple organ tissues of 12-week-old male mice that were previously established as inherently low-active (n = 15, C3H/HeJ strain) and high-active (n = 15, C57L/J strain). Total body water of each mouse was enriched to 5% deuterium oxide (D2O) via intraperitoneal injection and maintained with D2O enriched drinking water for about 24 h. Blood samples from the jugular vein and tissues (kidney, heart, lung, muscle, fat, jejunum, ileum, liver, brain, skin, and bone) were collected for enrichment analysis of alanine by LC-MS/MS. Protein FSR was calculated as -ln(1-enrichment). Data are mean±SE as fraction/day (unpaired t-test). Kidney protein FSR in the low-active mice was 7.82% higher than in high-active mice (low-active: 0.1863±0.0018, high-active: 0.1754±0.0028, p = 0.0030). No differences were found in any of the other measured organ tissues. However, all tissues resulted in a generally higher protein FSR in the low-activity mice compared to the high-activity mice (e.g. lung LA: 0.0711±0.0015, HA: 0.0643±0.0020, heart LA: 0.0649± 0.0013 HA: 0.0712±0.0073). Our observations suggest that high-active mice in most organ tissues are no more inherently equipped for metabolic adaptation than low-active mice, but there may be a connection between protein metabolism of kidney tissue and physical activity level. In addition, low-active mice have higher organ-specific baseline protein FSR possibly contributing to the inability to achieve higher physical activity levels.


Asunto(s)
Músculos/metabolismo , Biosíntesis de Proteínas/genética , Proteínas/genética , Conducta Sedentaria , Animales , Cromatografía Liquida , Humanos , Inyecciones Intraperitoneales , Yeyuno/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C3H , Especificidad de Órganos/genética , Condicionamiento Físico Animal/métodos , Proteínas/aislamiento & purificación , Espectrometría de Masas en Tándem , Distribución Tisular/genética
12.
Am J Physiol Gastrointest Liver Physiol ; 319(2): G133-G141, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32538141

RESUMEN

Xenometabolites from microbial and plant sources are thought to confer beneficial as well as deleterious effects on host physiology. Studies determining absorption and tissue uptake of xenometabolites are limited. We utilized a conscious catheterized pig model to evaluate interorgan flux of annotated known and suspected xenometabolites, derivatives, and bile acids. Female pigs (n = 12, 2-3 mo old, 25.6 ± 2.2 kg) had surgically implanted catheters across portal-drained viscera (PDV), splanchnic compartment (SPL), liver, kidney, and hindquarter muscle. Overnight-fasted arterial and venous plasma was collected simultaneously in a conscious state and stored at -80°C. Thawed samples were analyzed by liquid chromatography-mass spectrometry. Plasma flow was determined with para-aminohippuric acid dilution technology and used to calculate net organ balance for each metabolite. Significant organ uptake or release was determined if net balance differed from zero. A total of 48 metabolites were identified in plasma, and 31 of these had at least one tissue with a significant net release or uptake. All bile acids, indole-3-acetic acid, indole-3-arylic acid, and hydrocinnamic acid were released from the intestine and taken up by the liver. Indole-3-carboxaldehyde, p-cresol glucuronide, 4-hydroxyphenyllactic acid, dodecanendioic acid, and phenylacetylglycine were also released from the intestines. Liver or kidney uptake was noted for indole-3-acetylglycine, p-cresol glucuronide, atrolactic acid, and dodecanedioic acid. Indole-3-carboxaldehyde, atrolactic acid, and dodecanedioic acids showed net release from skeletal muscle. The results confirm gastrointestinal origins for several known xenometabolites in an in vivo overnight-fasted conscious pig model, whereas nongut net release of other putative xenometabolites suggests a more complex metabolism.NEW & NOTEWORTHY Xenometabolites from microbe origins influence host health and disease, but absorption and tissue uptake of these metabolites remain speculative. Results herein are the first to demonstrate in vivo organ uptake and release of these metabolites. We used a conscious catheterized pig model to confirm gastrointestinal origins for several xenometabolites (e.g., indolic compounds, 4-hydroxyphenyllactic acid, dodecanendioic acid, and phenylacetylgycine). Liver and kidney were major sites for xenometabolite uptake, likely highlighting liver conjugation metabolism and renal excretion.


Asunto(s)
Intestinos/fisiología , Riñón/fisiología , Hígado/metabolismo , Músculo Esquelético/fisiología , Ácido p-Aminohipúrico/farmacocinética , Animales , Transporte Biológico , Femenino , Fenoles/sangre , Fenoles/metabolismo , Sistema Porta , Porcinos , Ácido p-Aminohipúrico/sangre
13.
PLoS One ; 15(6): e0235095, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32589680

RESUMEN

Our previous studies suggest that physical activity (PA) levels are potentially regulated by endogenous metabolic mechanisms such as the vasodilatory roles of nitric oxide (NO) production via the precursor arginine (ARG) and ARG-related pathways. We assessed ARG metabolism and its precursors [citrulline (CIT), glutamine (GLN), glutamate (GLU), ornithine (ORN), and phenylalanine (PHE)] by measuring plasma concentration, whole-body production (WBP), de novo ARG and NO production, and clearance rates in previously classified low-active (LA) or high-active (HA) mice. We assessed LA (n = 23) and HA (n = 20) male mice by administering a stable isotope tracer pulse via jugular catheterization. We measured plasma enrichments via liquid chromatography tandem mass spectrometry (LC-MS/MS) and body compostion by echo-MRI. WBP, clearance rates, and de novo ARG and NO were calculated. Compared to LA mice, HA mice had lower plasma concentrations of GLU (71.1%; 36.8 ± 2.9 vs. 17.5 ± 1.7µM; p<0.0001), CIT (21%; 57.3 ± 2.3 vs. 46.4 ± 1.5µM; p = 0.0003), and ORN (40.1%; 55.4 ± 7.3 vs. 36.9 ± 2.6µM; p = 0.0241), but no differences for GLN, PHE, and ARG. However, HA mice had higher estimated NO production ratio (0.64 ± 0.08; p = 0.0197), higher WBP for CIT (21.8%, 8.6 ± 0.2 vs. 10.7 ± 0.3 nmol/g-lbm/min; p<0.0001), ARG (21.4%, 35.0 ± 0.6 vs. 43.4 ± 0.7 nmol/g-lbm/min; p<0.0001), PHE (7.6%, 23.8 ± 0.5 vs. 25.6 ± 0.5 nmol/g-lbm/min; p<0.0100), and lower GLU (78.5%; 9.4 ± 1.1 vs. 4.1 ± 1.6 nmol/g lbm/min; p = 0.0161). We observed no significant differences in WBP for GLN, ORN, PHE, or de novo ARG. We concluded that HA mice have an activated whole-body ARG pathway, which may be associated with regulating PA levels via increased NO production.


Asunto(s)
Arginina/sangre , Actividad Motora , Óxido Nítrico/sangre , Animales , Cromatografía Liquida/métodos , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Condicionamiento Físico Animal , Espectrometría de Masas en Tándem/métodos
14.
Clin Nutr ; 39(10): 3056-3065, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32035752

RESUMEN

BACKGROUND & AIMS: Metabolic characterization of a well-defined group of patients could be a powerful tool in revealing metabolic signatures to explain limb muscle weakness in chronic diseases. Studies are currently limited in Chronic Obstructive Pulmonary Disease (COPD) to the identification of differential amino acid concentrations but lack comprehensive analysis of the flux through relevant muscle function related metabolic pathways. METHODS: In 23 stable patients with moderate to very severe COPD and 19 healthy controls, a comprehensive metabolic flux analysis was conducted by administering an intravenous pulse and primed constant infusion of multiple stable tracers of amino acids known to play a role in muscle health. Blood samples were obtained to calculate production (WBP) and interconversion rates, and plasma concentrations of these amino acids. Lower and upper limb muscle strength, muscle mass, lung function, physical activity level, and disease history and characteristics were assessed. RESULTS: The COPD group was characterized by lower and upper limb muscle weakness (P < 0.01) despite preserved muscle mass. Higher values were found in COPD for plasma glutamine, WBP of leucine (P < 0.001), 3-methylhistidine (P < 0.01) (marker of enhanced myofibrillar protein breakdown), citrulline (P < 0.05), and arginine to citrulline conversion (P < 0.05) (reflecting enhanced nitric oxide synthesis). Plasma concentration of ß-hydroxy ß-methylbutyrate (HMB with anticatabolic, anabolic and contractile properties), WBP of glycine (precursor of creatine and glutathione), and transcutaneous O2 saturation explained up to 79% and 65% of the variation in strength of the lower and upper limb muscles, respectively, in COPD. CONCLUSIONS: Comprehensive metabolic flux analysis revealed a homogenous metabolic signature in stable patients with COPD and a specific metabolic profile in those with skeletal muscle weakness. CLINICAL TRIAL REGISTRY: ClinicalTrials.gov; No. NCT01787682; URL: www.clinicaltrials.gov.


Asunto(s)
Metaboloma , Fuerza Muscular , Debilidad Muscular/metabolismo , Músculo Esquelético/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Anciano , Biomarcadores/sangre , Estudios de Casos y Controles , Ensayos Clínicos como Asunto , Femenino , Humanos , Masculino , Metabolómica , Persona de Mediana Edad , Debilidad Muscular/diagnóstico , Debilidad Muscular/fisiopatología , Músculo Esquelético/fisiopatología , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/fisiopatología
15.
Int J Radiat Biol ; 96(1): 112-128, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30475652

RESUMEN

Purpose: Göttingen minipig (G-MP) displays classic gastrointestinal acute radiation syndrome (GI-ARS) following total body irradiation (TBI) at GI doses which are lethal by 10-14 days. In collaboration with BARDA, we are developing a hemi-body/partial body irradiation (PBI) model by exposing only the abdomen and lower extremities to study GI structure/function impairment, natural history of injury and recovery, as well as correlative biomarkers out to 30 days.Materials and methods: Twenty-four G-MP were exposed to either 12 or 16 Gy (LINAC Elekta); head, forelimbs, and thorax were outside the irradiation field, sparing ∼50% of the bone marrow. Animals were followed for 30 days with euthanasia scheduled at pre-set intervals to study the time course of GI injury and recovery. Hematological profiles, clinical symptoms, gross- and histo-pathology including markers of proliferation and apoptosis in the small intestines, gut function parameters (food tolerance, digestion, absorption, citrulline production), and levels of two biomarkers, CRP and IGF-1, were evaluated.Results: PBI at 16 Gy yielded higher lethality than 12 Gy. Unlike TBI, PBI did not cause severe pancytopenia or external hemorrhage, as expected, and allowed to focus the injury on GI organs while sparing the radiation sensitive heart and lung. Compromised animals showed inactivity, anorexia, vomiting, diarrhea, and weight loss. Histology revealed that in 12 Gy irradiated animals, lesions recovered overtime. In 16 Gy irradiated animals, lesions were more pronounced and persistent. BrdU and Ki67 labelling demonstrated dose-dependent loss of crypts and subsequent mucosal ulceration which recovered over time. Minimal apoptosis was observed at both doses. Reductions in food tolerance, digestion, absorption, and citrulline production were time and dose-dependent. Loss of citrulline reached a nadir between 6-12 days and then recovered partially. CRP and IGF-1 were upregulated following PBI at GI doses.Conclusions: This lower hemi-body irradiation model allowed for extended survival at GI-specific ARS doses and development of a well-controlled GI syndrome with minimal hematopoietic injury or confounding mortality from cardiopulmonary damage. A dose-dependent impairment in the intestinal structure resulted in overall decreased gut functionality followed by a partial recovery. However, while the structure appeared to be recovered, not all functionality was attained. PBI induced systemic inflammation and altered the IGF-1 hormone indicating that these can be used as biomarkers in the minipig even under partial body conditions. This PBI model aligns with other minipig models under BARDA's large animal consortium to test medical countermeasure efficacy against a less complex GI-specific ARS injury.


Asunto(s)
Síndrome de Radiación Aguda/patología , Síndrome de Radiación Aguda/fisiopatología , Tracto Gastrointestinal/fisiopatología , Tracto Gastrointestinal/efectos de la radiación , Síndrome de Radiación Aguda/sangre , Animales , Recuento de Células Sanguíneas , Proteína C-Reactiva/metabolismo , Citrulina/sangre , Digestión/efectos de la radiación , Modelos Animales de Enfermedad , Relación Dosis-Respuesta en la Radiación , Tracto Gastrointestinal/patología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Masculino , Porcinos , Porcinos Enanos , Factores de Tiempo
16.
Am J Pathol ; 189(9): 1797-1813, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439155

RESUMEN

Sepsis is a multiorgan disease affecting the ileum and jejunum (small intestine), liver, skeletal muscle, and lung clinically. The specific metabolic changes in the ileum, jejunum, liver, skeletal muscle, and lung have not previously been investigated. Live Pseudomonas aeruginosa, isolated from a patient, was given via i.v. catheter to pigs to induce severe sepsis. Eighteen hours later, ileum, jejunum, medial gastrocnemius skeletal muscle, liver, and lung were analyzed by nontargeted metabolomics analysis using gas chromatography/mass spectrometry. The ileum and the liver demonstrated significant changes in metabolites involved in linoleic acid metabolism: the ileum and lung had significant changes in the metabolism of valine/leucine/isoleucine; the jejunum, skeletal muscle, and liver had significant changes in arginine/proline metabolism; and the skeletal muscle and lung had significant changes in aminoacyl-tRNA biosynthesis, as analyzed by pathway analysis. Pathway analysis also identified changes in metabolic pathways unique for different tissues, including changes in the citric acid cycle (jejunum), ß-alanine metabolism (skeletal muscle), and purine metabolism (liver). These findings demonstrate both overlapping metabolic pathways affected in different tissues and those that are unique to others and provide insight into the metabolic changes in sepsis leading to organ dysfunction. This may allow therapeutic interventions that focus on multiple tissues or single tissues once the relationship of the altered metabolites/metabolism to the underlying pathogenesis of sepsis is determined.


Asunto(s)
Íleon/metabolismo , Yeyuno/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Músculo Esquelético/metabolismo , Infecciones por Pseudomonas/metabolismo , Sepsis/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Íleon/microbiología , Íleon/patología , Yeyuno/microbiología , Yeyuno/patología , Hígado/microbiología , Hígado/patología , Pulmón/microbiología , Pulmón/patología , Redes y Vías Metabólicas , Metabolómica , Músculo Esquelético/microbiología , Músculo Esquelético/patología , Infecciones por Pseudomonas/complicaciones , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/patología , Pseudomonas aeruginosa/aislamiento & purificación , Sepsis/complicaciones , Sepsis/microbiología , Sepsis/patología , Porcinos
17.
Curr Opin Clin Nutr Metab Care ; 22(5): 337-346, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31192825

RESUMEN

PURPOSE OF REVIEW: Stable isotope methods have been used for many years to assess whole-body protein and amino acid kinetics in healthy conditions and in response to aging, exercise and (clinically stable) disease states. RECENT FINDINGS: In recent years, tracer research expanded to the anabolic response to feeding in critical illness and its use during acute metabolic stressors. Furthermore, new isotope approaches and tracer insights have been obtained. In the postabsorptive state, the novel tracer pulse approach has several advantages above the established continuous tracer approach because of the metabolic information that can be obtained, easy applicability, and low tracer costs. The use of bolus versus sip-feeding approaches to assess the anabolic response to a meal is dependent on the research question and its feasibility. Promising new tracer approaches have been developed to measure the anabolic capacity, and protein digestibility and absorption. Advances have been made in the field of mass spectrometry in low enrichment analysis. SUMMARY: Novel tracer approaches are available that can more readily be used in critical illness and during acute metabolic stressors. Besides the use of tracer application in various clinical conditions, more research is needed on how to incorporate isotopes on an individual level.


Asunto(s)
Aminoácidos , Marcaje Isotópico/métodos , Proteínas , Aminoácidos/sangre , Aminoácidos/química , Aminoácidos/metabolismo , Aminoácidos/farmacocinética , Enfermedad Crítica , Humanos , Espectrometría de Masas , Proteínas/química , Proteínas/metabolismo , Proteínas/farmacocinética
18.
Am J Physiol Gastrointest Liver Physiol ; 316(6): G755-G762, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30978112

RESUMEN

Maintenance of gut integrity has long been recognized as crucial for survival in sepsis, but alterations in protein metabolism have not previously been documented. Therefore, in the present study, we measured in a Pseudomonas aeruginosa-induced porcine sepsis model fractional protein synthesis (FSR) and breakdown rates (FBR) in jejunal mucosa in a fasted, conscious state. FSR was measured by the incorporation rate of stable tracer amino acid (l-[ring-13C6]phenylalanine) into tissue protein. FBR was determined using the relation between blood arterial enrichment and intracellular enrichment of phenylalanine in consecutive mucosal biopsies after a pulse of l-[15N]phenylalanine. Additionally, we determined the FSR in jejunum, ileum, liver, muscle, and lung tissue. We found in this sham-controlled acute sepsis pig model (control: n = 9; sepsis: n = 13) that jejunal mucosal protein turnover is reduced with both decreased FSR (control: 3.29 ± 0.22; sepsis: 2.32 ± 0.12%/h, P = 0.0008) and FBR (control: 0.72 ± 0.12; sepsis: 0.34 ± 0.04%/h, P = 0.006). We also found that FSR was unchanged in ileum and muscle, whereas it was higher in the liver (control: 0.87 ± 0.05; sepsis: 1.05 ± 0.06%/h, P = 0.041). Our data, obtained with a translational acute sepsis model, suggest that jejunal mucosal protein metabolism is diminished in acute sepsis. Comparison with other tissues indicates that the most serious acute metabolic changes in sepsis occur in the jejunum rather than the muscle. NEW & NOTEWORTHY In a highly translational acute sepsis model, presented data suggest that jejunal mucosal protein metabolism is diminished in acute sepsis, even if the origin of the sepsis is not located in the gut. Comparison with other tissues indicates that the most serious acute changes in the protein synthesis rates in sepsis occur in the gut rather than the muscle. Therefore, we hypothesize that preventing a compromised gut is critical to maintain gut function during sepsis.


Asunto(s)
Mucosa Intestinal , Yeyuno , Biosíntesis de Proteínas , Sepsis , Animales , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Yeyuno/metabolismo , Yeyuno/patología , Hígado/metabolismo , Hígado/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Fenilalanina/farmacocinética , Pseudomonas aeruginosa/fisiología , Trazadores Radiactivos , Sepsis/metabolismo , Sepsis/microbiología , Porcinos
19.
Clin Nutr ; 37(4): 1406-1414, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-28669667

RESUMEN

BACKGROUND & AIMS: Bile acids (BAs) play a key role in lipid uptake and metabolic signalling in different organs including gut, liver, muscle and brown adipose tissue. Portal and peripheral plasma BA concentrations increase after a meal. However, the exact kinetics of postprandial BA metabolism have never been described in great detail. We used a conscious porcine model to investigate postprandial plasma concentrations and transorgan fluxes of BAs, glucose and insulin using the para-aminohippuric acid dilution method. METHODS: Eleven pigs with intravascular catheters received a standard mixed-meal while blood was sampled from different veins such as the portal vein, abdominal aorta and hepatic vein. To translate the data to humans, fasted venous and portal blood was sampled from non-diabetic obese patients during gastric by-pass surgery. RESULTS: The majority of the plasma bile acid pool and postprandial response consisted of glycine-conjugated forms of primary bile acids. Conjugated bile acids were more efficiently cleared by the liver than unconjugated forms. The timing and size of the postprandial response showed large interindividual variability for bile acids compared to glucose and insulin. CONCLUSIONS: The liver selectively extracts most BAs and BAs with highest affinity for the most important metabolic BA receptor, TGR5, are typically low in both porcine and human peripheral circulation. Our findings raise questions about the magnitude of a peripheral TGR5 signal and its ultimate clinical application.


Asunto(s)
Ácidos y Sales Biliares/sangre , Ácidos y Sales Biliares/metabolismo , Circulación Hepática/fisiología , Periodo Posprandial/fisiología , Adulto , Animales , Glucemia/análisis , Cateterismo , Ayuno/fisiología , Femenino , Derivación Gástrica , Humanos , Insulina/sangre , Masculino , Persona de Mediana Edad , Obesidad/metabolismo , Obesidad/cirugía , Receptores Acoplados a Proteínas G , Porcinos
20.
Lab Anim ; 52(2): 163-175, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28679339

RESUMEN

Survival of sepsis is related to loss of muscle mass. Therefore, it is imperative to further define and understand the basic alterations in nutrient metabolism in order to improve targeted sepsis nutritional therapies. We developed and evaluated a controlled hyperdynamic severe sepsis pig model that can be used for in vivo multi-organ metabolic studies in a conscious state. In this catheterized pig model, bacteremia was induced intravenously with 109 CFU/h Pseudomonas aeruginosa (PA) in 13 pigs for 18 h. Both the PA and control (nine) animals received fluid resuscitation and were continuously monitored. We examined in detail their hemodynamics, blood gases, clinical chemistry, inflammation, histopathology and organ plasma flows. The systemic inflammatory response (SIRS) diagnostic scoring system was used to determine the clinical septic state. Within 6 h from the start of PA infusion, a septic state developed, as was reflected by hyperthermia and cardiovascular changes. After 12 h of PA infusion, severe sepsis was diagnosed. Disturbed cardiovascular function, decreased portal drained viscera plasma flow (control: 37.6 ± 4.6 mL/kg body weight (bw)/min; PA 20.3 ± 2.6 mL/kg bw/min, P < 0.001), as well as moderate villous injury in the small intestines were observed. No lung, kidney or liver failure was observed. Acute phase C-reactive protein (CRP) and interleukin-6 (IL-6) levels did not change in the PA group. However, significant metabolic changes such as enhanced protein breakdown, hypocalcemia and hypocholesterolemia were found. In conclusion, PA-induced bacteremia in a catheterized pig is a clinically relevant model for acute severe sepsis and enables the study of complex multi-organ metabolisms.


Asunto(s)
Modelos Animales de Enfermedad , Análisis de Flujos Metabólicos , Infecciones por Pseudomonas/microbiología , Sepsis/microbiología , Estructuras Animales/irrigación sanguínea , Animales , Análisis de los Gases de la Sangre , Pruebas de Química Clínica , Femenino , Hemodinámica , Inflamación/metabolismo , Inflamación/microbiología , Infecciones por Pseudomonas/metabolismo , Pseudomonas aeruginosa/fisiología , Sepsis/metabolismo , Porcinos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...