Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
STAR Protoc ; 5(1): 102893, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38416649

RESUMEN

Adipocyte size and fragility and commercial kit costs impose significant limitations on single-cell RNA sequencing of adipose tissue. Accordingly, we developed a workflow to isolate and sample-barcode nuclei from individual adipose tissue samples, integrating flow cytometry for quality control, counting, and precise nuclei pooling for direct loading onto the popular 10× Chromium controller. This approach can eliminate batch confounding, and significantly reduces poor-quality nuclei, ambient RNA contamination, and droplet loading-associated reagent waste, resulting in pronounced improvements in information content and cost efficiency.


Asunto(s)
Núcleo Celular , ARN , Animales , Ratones , Humanos , Citometría de Flujo/métodos , Análisis de Secuencia de ARN/métodos , Núcleo Celular/genética , Tejido Adiposo
3.
Nature ; 603(7903): 926-933, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35296864

RESUMEN

White adipose tissue, once regarded as morphologically and functionally bland, is now recognized to be dynamic, plastic and heterogenous, and is involved in a wide array of biological processes including energy homeostasis, glucose and lipid handling, blood pressure control and host defence1. High-fat feeding and other metabolic stressors cause marked changes in adipose morphology, physiology and cellular composition1, and alterations in adiposity are associated with insulin resistance, dyslipidemia and type 2 diabetes2. Here we provide detailed cellular atlases of human and mouse subcutaneous and visceral white fat at single-cell resolution across a range of body weight. We identify subpopulations of adipocytes, adipose stem and progenitor cells, vascular and immune cells and demonstrate commonalities and differences across species and dietary conditions. We link specific cell types to increased risk of metabolic disease and provide an initial blueprint for a comprehensive set of interactions between individual cell types in the adipose niche in leanness and obesity. These data comprise an extensive resource for the exploration of genes, traits and cell types in the function of white adipose tissue across species, depots and nutritional conditions.


Asunto(s)
Tejido Adiposo Blanco , Atlas como Asunto , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedades Metabólicas , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Adiposidad , Animales , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Ratones , Obesidad/metabolismo
4.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34965583

RESUMEN

Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) is a technique used to identify protein-DNA interaction sites through antibody pull-down, sequencing and analysis; with enrichment 'peak' calling being the most critical analytical step. Benchmarking studies have consistently shown that peak callers have distinct selectivity and specificity characteristics that are not additive and seldom completely overlap in many scenarios, even after parameter optimization. We therefore developed ChIP-AP, an integrated ChIP-seq analysis pipeline utilizing four independent peak callers, which seamlessly processes raw sequencing files to final result. This approach enables (1) better gauging of peak confidence through detection by multiple algorithms, and (2) more thoroughly surveys the binding landscape by capturing peaks not detected by individual callers. Final analysis results are then integrated into a single output table, enabling users to explore their data by applying selectivity and sensitivity thresholds that best address their biological questions, without needing any additional reprocessing. ChIP-AP therefore presents investigators with a more comprehensive coverage of the binding landscape without requiring additional wet-lab observations.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Benchmarking , Línea Celular , Inmunoprecipitación de Cromatina , Programas Informáticos , Factores de Transcripción
5.
Sci Signal ; 14(709): eabh3839, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784250

RESUMEN

Thyroid hormone (TH) action is essential for hepatic lipid synthesis and oxidation. Analysis of hepatocyte-specific thyroid receptor ß1 (TRß1) knockout mice confirmed a role for TH in stimulating de novo lipogenesis and fatty acid oxidation through its nuclear receptor. Specifically, TRß1 and its principal corepressor NCoR1 in hepatocytes repressed de novo lipogenesis, whereas the TH-mediated induction of lipogenic genes depended on the transcription factor ChREBP. Mice with a hepatocyte-specific deficiency in ChREBP lost TH-mediated stimulation of the lipogenic program, which, in turn, impaired the regulation of fatty acid oxidation. TH regulated ChREBP activation and recruitment to DNA, revealing a mechanism by which TH regulates specific signaling pathways. Regulation of the lipogenic pathway by TH through ChREBP was conserved in hepatocytes derived from human induced pluripotent stem cells. These results demonstrate that TH signaling in the liver acts simultaneously to enhance both lipogenesis and fatty acid oxidation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lipogénesis , Hormonas Tiroideas , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Ratones , Hormonas Tiroideas/metabolismo
6.
Leukemia ; 35(12): 3371-3382, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34120146

RESUMEN

Leukemic stem cells (LSCs) can acquire non-mutational resistance following drug treatment leading to therapeutic failure and relapse. However, oncogene-independent mechanisms of drug persistence in LSCs are incompletely understood, which is the primary focus of this study. We integrated proteomics, transcriptomics, and metabolomics to determine the contribution of STAT3 in promoting metabolic changes in tyrosine kinase inhibitor (TKI) persistent chronic myeloid leukemia (CML) cells. Proteomic and transcriptional differences in TKI persistent CML cells revealed BCR-ABL-independent STAT3 activation in these cells. While knockout of STAT3 inhibited the CML cells from developing drug-persistence, inhibition of STAT3 using a small molecule inhibitor sensitized the persistent CML cells to TKI treatment. Interestingly, given the role of phosphorylated STAT3 as a transcription factor, it localized uniquely to genes regulating metabolic pathways in the TKI-persistent CML stem and progenitor cells. Subsequently, we observed that STAT3 dysregulated mitochondrial metabolism forcing the TKI-persistent CML cells to depend on glycolysis, unlike TKI-sensitive CML cells, which are more reliant on oxidative phosphorylation. Finally, targeting pyruvate kinase M2, a rate-limiting glycolytic enzyme, specifically eradicated the TKI-persistent CML cells. By exploring the role of STAT3 in altering metabolism, we provide critical insight into identifying potential therapeutic targets for eliminating TKI-persistent LSCs.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Metaboloma , Células Madre Neoplásicas/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transcriptoma , Animales , Apoptosis , Femenino , Glucólisis , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/genética
7.
Blood ; 138(15): 1331-1344, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33971010

RESUMEN

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here, we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA and DNA interactions with the broadly expressed Runt-related transcription factor 1 (RUNX1), we identified the long noncoding RNA (lncRNA) originating from the upstream regulatory element of PU.1 (LOUP). This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia (AML), wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein, RUNX1-ETO, limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell-type-specific RNAs and transcription factors, as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/genética , ARN Largo no Codificante/genética , Proteína 1 Compañera de Translocación de RUNX1/genética , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica , Humanos , Activación Transcripcional
8.
Cell Metab ; 33(7): 1449-1465.e6, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34038712

RESUMEN

The lymphatic vasculature plays important roles in the physiology of the organs in which it resides, though a clear mechanistic understanding of how this crosstalk is mediated is lacking. Here, we performed single-cell transcriptional profiling of human and mouse adipose tissue and found that lymphatic endothelial cells highly express neurotensin (NTS/Nts). Nts expression is reduced by cold and norepinephrine in an α-adrenergic-dependent manner, suggesting a role in adipose thermogenesis. Indeed, NTS treatment of brown adipose tissue explants reduced expression of thermogenic genes. Furthermore, adenoviral-mediated overexpression and knockdown or knockout of NTS in vivo reduced and enhanced cold tolerance, respectively, an effect that is mediated by NTSR2 and ERK signaling. Inhibition of NTSR2 promoted energy expenditure and improved metabolic function in obese mice. These data establish a link between adipose tissue lymphatics and adipocytes with potential therapeutic implications.


Asunto(s)
Células Endoteliales/metabolismo , Vasos Linfáticos/citología , Neurotensina/fisiología , Termogénesis , Animales , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/genética , Vasos Linfáticos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Neurotensina/genética , Neurotensina/metabolismo , Neurotensina/farmacología , Transducción de Señal/genética , Termogénesis/efectos de los fármacos , Termogénesis/genética
9.
Cell Metab ; 32(4): 665-675.e6, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32941798

RESUMEN

The thiazolidinediones (TZDs) are ligands of PPARγ that improve insulin sensitivity, but their use is limited by significant side effects. Recently, we demonstrated a mechanism wherein TZDs improve insulin sensitivity distinct from receptor agonism and adipogenesis: reversal of obesity-linked phosphorylation of PPARγ at serine 273. However, the role of this modification hasn't been tested genetically. Here we demonstrate that mice encoding an allele of PPARγ that cannot be phosphorylated at S273 are protected from insulin resistance, without exhibiting differences in body weight or TZD-associated side effects. Indeed, hyperinsulinemic-euglycemic clamp experiments confirm insulin sensitivity. RNA-seq in these mice reveals reduced expression of Gdf3, a BMP family member. Ectopic expression of Gdf3 is sufficient to induce insulin resistance in lean, healthy mice. We find Gdf3 inhibits BMP signaling and insulin signaling in vitro. Together, these results highlight the diabetogenic role of PPARγ S273 phosphorylation and focus attention on a putative target, Gdf3.


Asunto(s)
Factor 3 de Diferenciación de Crecimiento/metabolismo , Obesidad/tratamiento farmacológico , PPAR gamma/metabolismo , Tiazolidinedionas/farmacología , Alelos , Animales , Células Cultivadas , Factor 3 de Diferenciación de Crecimiento/genética , Humanos , Resistencia a la Insulina , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , PPAR gamma/genética , Fosforilación/efectos de los fármacos
10.
Mol Metab ; 42: 101086, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32992037

RESUMEN

OBJECTIVE: Obesity due to overnutrition causes adipose tissue dysfunction, which is a critical pathological step on the road to type 2 diabetes (T2D) and other metabolic disorders. In this study, we conducted an unbiased investigation into the fundamental molecular mechanisms by which adipocytes transition to an unhealthy state during obesity. METHODS: We used nuclear tagging and translating ribosome affinity purification (NuTRAP) reporter mice crossed with Adipoq-Cre mice to determine adipocyte-specific 1) transcriptional profiles (RNA-seq), 2) promoter and enhancer activity (H3K27ac ChIP-seq), 3) and PPARγ cistrome (ChIP-seq) profiles in mice fed chow or a high-fat diet (HFD) for 10 weeks. We also assessed the impact of the PPARγ agonist rosiglitazone (Rosi) on gene expression and cellular state of adipocytes from the HFD-fed mice. We integrated these data to determine the transcription factors underlying adipocyte responses to HFD and conducted functional studies using shRNA-mediated loss-of-function approaches in 3T3-L1 adipocytes. RESULTS: Adipocytes from the HFD-fed mice exhibited reduced expression of adipocyte markers and metabolic genes and enhanced expression of myofibroblast marker genes involved in cytoskeletal organization, accompanied by the formation of actin filament structures within the cell. PPARγ binding was globally reduced in adipocytes after HFD feeding, and Rosi restored the molecular and cellular phenotypes of adipocytes associated with HFD feeding. We identified the TGFß1 effector protein SMAD to be enriched at HFD-induced promoters and enhancers and associated with myofibroblast signature genes. TGFß1 treatment of mature 3T3-L1 adipocytes induced gene expression and cellular changes similar to those seen after HFD in vivo, and knockdown of Smad3 blunted the effects of TGFß1. CONCLUSIONS: Our data demonstrate that adipocytes fail to maintain cellular identity after HFD feeding, acquiring characteristics of a myofibroblast-like cell type through reduced PPARγ activity and elevated TGFß-SMAD signaling. This cellular identity crisis may be a fundamental mechanism that drives functional decline of adipose tissues during obesity.


Asunto(s)
Adipocitos/metabolismo , Obesidad/metabolismo , PPAR gamma/metabolismo , Células 3T3-L1 , Adipocitos/fisiología , Adipogénesis/genética , Tejido Adiposo/metabolismo , Animales , Diferenciación Celular , Dieta Alta en Grasa , Humanos , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/genética , PPAR gamma/genética , Rosiglitazona/farmacología , Transducción de Señal/fisiología , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
Cell Rep ; 28(2): 302-311.e5, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291568

RESUMEN

The bone marrow microenvironment is composed of heterogeneous cell populations of non-hematopoietic cells with complex phenotypes and undefined trajectories of maturation. Among them, mesenchymal cells maintain the production of stromal, bone, fat, and cartilage cells. Resolving these unique cellular subsets within the bone marrow remains challenging. Here, we used single-cell RNA sequencing of non-hematopoietic bone marrow cells to define specific subpopulations. Furthermore, by combining computational prediction of the cell state hierarchy with the known expression of key transcription factors, we mapped differentiation paths to the osteocyte, chondrocyte, and adipocyte lineages. Finally, we validated our findings using lineage-specific reporter strains and targeted knockdowns. Our analysis reveals differentiation hierarchies for maturing stromal cells, determines key transcription factors along these trajectories, and provides an understanding of the complexity of the bone marrow microenvironment.


Asunto(s)
Médula Ósea/metabolismo , Nicho de Células Madre/fisiología , Diferenciación Celular , Humanos
13.
Cell Metab ; 28(4): 631-643.e3, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30078553

RESUMEN

Skeletal muscle and brown adipose tissue (BAT) are functionally linked, as exercise increases browning via secretion of myokines. It is unknown whether BAT affects muscle function. Here, we find that loss of the transcription factor IRF4 in BAT (BATI4KO) reduces exercise capacity, mitochondrial function, ribosomal protein synthesis, and mTOR signaling in muscle and causes tubular aggregate formation. Loss of IRF4 induces myogenic gene expression in BAT, including the secreted factor myostatin, a known inhibitor of muscle function. Reducing myostatin via neutralizing antibodies or soluble receptor rescues the exercise capacity of BATI4KO mice. In addition, overexpression of IRF4 in brown adipocytes reduces serum myostatin and increases exercise capacity in muscle. Finally, mice housed at thermoneutrality have reduced IRF4 in BAT, lower exercise capacity, and elevated serum myostatin; these abnormalities are corrected by excising BAT. Collectively, our data point to an unsuspected level of BAT-muscle crosstalk driven by IRF4 and myostatin.


Asunto(s)
Tejido Adiposo Pardo/metabolismo , Factores Reguladores del Interferón/metabolismo , Miostatina/metabolismo , Condicionamiento Físico Animal/fisiología , Músculo Cuádriceps/metabolismo , Adipocitos Marrones/metabolismo , Animales , Anticuerpos Neutralizantes/metabolismo , Metabolismo Energético/fisiología , Regulación de la Expresión Génica , Factores Reguladores del Interferón/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Electrónica , Mitocondrias/metabolismo , Enfermedades Musculares/diagnóstico por imagen , Enfermedades Musculares/metabolismo , Miostatina/genética , Consumo de Oxígeno , Músculo Cuádriceps/diagnóstico por imagen , Sensación Térmica/fisiología , Factor de Crecimiento Transformador beta/metabolismo
14.
Cell Metab ; 27(5): 1121-1137.e5, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-29657031

RESUMEN

Beige and brown adipocytes generate heat in response to reductions in ambient temperature. When warmed, both beige and brown adipocytes exhibit morphological "whitening," but it is unknown whether or to what extent this represents a true shift in cellular identity. Using cell-type-specific profiling in vivo, we uncover a unique paradigm of temperature-dependent epigenomic plasticity of beige, but not brown, adipocytes, with conversion from a brown to a white chromatin state. Despite this profound shift in cellular identity, warm whitened beige adipocytes retain an epigenomic memory of prior cold exposure defined by an array of poised enhancers that prime thermogenic genes for rapid response during a second bout of cold exposure. We further show that a transcriptional cascade involving glucocorticoid receptor and Zfp423 can drive warm-induced whitening of beige adipocytes. These studies identify the epigenomic and transcriptional bases of an extraordinary example of cellular plasticity in response to environmental signals.


Asunto(s)
Adipocitos Beige/citología , Adipocitos Marrones/citología , Adipocitos Blancos/citología , Plasticidad de la Célula/genética , Reprogramación Celular/genética , Epigénesis Genética , Termogénesis/genética , Adipocitos Beige/metabolismo , Adipocitos Marrones/metabolismo , Adipocitos Blancos/metabolismo , Animales , Frío , Proteínas de Unión al ADN/genética , Interacción Gen-Ambiente , Masculino , Ratones , Ratones Noqueados , Receptores de Glucocorticoides/genética , Factores de Transcripción/genética
15.
Elife ; 62017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091029

RESUMEN

Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Resistencia a la Insulina , Adipocitos/metabolismo , Animales , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados
16.
Proc Natl Acad Sci U S A ; 114(40): E8458-E8467, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923959

RESUMEN

Nuclear receptor corepressor 1 (NCoR1) is considered to be the major corepressor that mediates ligand-independent actions of the thyroid hormone receptor (TR) during development and in hypothyroidism. We tested this by expressing a hypomorphic NCoR1 allele (NCoR1ΔID), which cannot interact with the TR, in Pax8-KO mice, which make no thyroid hormone. Surprisingly, abrogation of NCoR1 function did not reverse the ligand-independent action of the TR on many gene targets and did not fully rescue the high mortality rate due to congenital hypothyroidism in these mice. To further examine NCoR1's role in repression by the unliganded TR, we deleted NCoR1 in the livers of euthyroid and hypothyroid mice and examined the effects on gene expression and enhancer activity measured by histone 3 lysine 27 (H3K27) acetylation. Even in the absence of NCoR1 function, we observed strong repression of more than 43% of positive T3 (3,3',5-triiodothyronine) targets in hypothyroid mice. Regulation of approximately half of those genes correlated with decreased H3K27 acetylation, and nearly 80% of these regions with affected H3K27 acetylation contained a bona fide TRß1-binding site. Moreover, using liver-specific TRß1-KO mice, we demonstrate that hypothyroidism-associated changes in gene expression and histone acetylation require TRß1. Thus, many of the genomic changes mediated by the TR in hypothyroidism are independent of NCoR1, suggesting a role for additional signaling modulators in hypothyroidism.


Asunto(s)
Hipotiroidismo/patología , Hígado/patología , Mutación , Co-Represor 1 de Receptor Nuclear/fisiología , Receptores beta de Hormona Tiroidea/fisiología , Hormonas Tiroideas/metabolismo , Acetilación , Animales , Células Cultivadas , Regulación de la Expresión Génica , Histonas/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Transducción de Señal
17.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666119

RESUMEN

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromosomas Humanos Par 17/metabolismo , Técnicas de Silenciamiento del Gen , Haplotipos , Hepatocitos/metabolismo , Heterocigoto , Código de Histonas , Humanos , Hígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química
18.
Nat Neurosci ; 20(3): 484-496, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28166221

RESUMEN

The hypothalamic arcuate-median eminence complex (Arc-ME) controls energy balance, fertility and growth through molecularly distinct cell types, many of which remain unknown. To catalog cell types in an unbiased way, we profiled gene expression in 20,921 individual cells in and around the adult mouse Arc-ME using Drop-seq. We identify 50 transcriptionally distinct Arc-ME cell populations, including a rare tanycyte population at the Arc-ME diffusion barrier, a new leptin-sensing neuron population, multiple agouti-related peptide (AgRP) and pro-opiomelanocortin (POMC) subtypes, and an orexigenic somatostatin neuron population. We extended Drop-seq to detect dynamic expression changes across relevant physiological perturbations, revealing cell type-specific responses to energy status, including distinct responses in AgRP and POMC neuron subtypes. Finally, integrating our data with human genome-wide association study data implicates two previously unknown neuron populations in the genetic control of obesity. This resource will accelerate biological discovery by providing insights into molecular and cell type diversity from which function can be inferred.


Asunto(s)
Núcleo Arqueado del Hipotálamo/anatomía & histología , Eminencia Media/anatomía & histología , Neuronas/metabolismo , Proteína Relacionada con Agouti/metabolismo , Proteína Relacionada con Agouti/fisiología , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Metabolismo Energético/fisiología , Células Ependimogliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Leptina/fisiología , Masculino , Eminencia Media/metabolismo , Ratones , Ratones Transgénicos , Obesidad/metabolismo , Orexinas/metabolismo , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/fisiología , Proopiomelanocortina/metabolismo , Proopiomelanocortina/fisiología , Somatostatina/metabolismo
19.
Cell Rep ; 18(4): 1048-1061, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28122230

RESUMEN

Epigenomic mechanisms direct distinct gene expression programs for different cell types. Various in vivo tissues have been subjected to epigenomic analysis; however, these studies have been limited by cellular heterogeneity, resulting in composite gene expression and epigenomic profiles. Here, we introduce "NuTRAP," a transgenic mouse that allows simultaneous isolation of cell-type-specific translating mRNA and chromatin from complex tissues. Using NuTRAP, we successfully characterize gene expression and epigenomic states of various adipocyte populations in vivo, revealing significant differences compared to either whole adipose tissue or in vitro adipocyte cell lines. We find that chromatin immunoprecipitation sequencing (ChIP-seq) using NuTRAP is highly efficient, scalable, and robust with even limited cell input. We further demonstrate the general utility of NuTRAP by analyzing hepatocyte-specific epigenomic states. The NuTRAP mouse is a resource that provides a powerful system for cell-type-specific gene expression and epigenomic profiling.


Asunto(s)
Epigenómica , Técnicas Genéticas , Transcriptoma , Adipocitos/citología , Adipocitos/metabolismo , Animales , Inmunoprecipitación de Cromatina , Histonas/genética , Histonas/metabolismo , Ratones , Ratones Transgénicos , ARN Mensajero/química , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
20.
J Clin Invest ; 126(8): 2839-54, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27400129

RESUMEN

The chronic inflammatory state that accompanies obesity is a major contributor to insulin resistance and other dysfunctional adaptations in adipose tissue. Cellular and secreted factors promote the inflammatory milieu of obesity, but the transcriptional pathways that drive these processes are not well described. Although the canonical inflammatory transcription factor NF-κB is considered to be the major driver of adipocyte inflammation, members of the interferon regulatory factor (IRF) family may also play a role in this process. Here, we determined that IRF3 expression is upregulated in the adipocytes of obese mice and humans. Signaling through TLR3 and TLR4, which lie upstream of IRF3, induced insulin resistance in murine adipocytes, while IRF3 knockdown prevented insulin resistance. Furthermore, improved insulin sensitivity in IRF3-deficient mice was associated with reductions in intra-adipose and systemic inflammation in the high fat-fed state, enhanced browning of subcutaneous fat, and increased adipose expression of GLUT4. Taken together, the data indicate that IRF3 is a major transcriptional regulator of adipose inflammation and is involved in maintaining systemic glucose and energy homeostasis.


Asunto(s)
Tejido Adiposo/inmunología , Inflamación , Resistencia a la Insulina , Factor 3 Regulador del Interferón/metabolismo , Obesidad/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipocitos/metabolismo , Adiposidad , Adulto , Animales , Glucemia/metabolismo , Dieta , Femenino , Regulación de la Expresión Génica , Técnica de Clampeo de la Glucosa , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Células HEK293 , Homeostasis , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , FN-kappa B/metabolismo , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...