Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Brief Bioinform ; 23(1)2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34965583

RESUMEN

Chromatin immunoprecipitation coupled with sequencing (ChIP-seq) is a technique used to identify protein-DNA interaction sites through antibody pull-down, sequencing and analysis; with enrichment 'peak' calling being the most critical analytical step. Benchmarking studies have consistently shown that peak callers have distinct selectivity and specificity characteristics that are not additive and seldom completely overlap in many scenarios, even after parameter optimization. We therefore developed ChIP-AP, an integrated ChIP-seq analysis pipeline utilizing four independent peak callers, which seamlessly processes raw sequencing files to final result. This approach enables (1) better gauging of peak confidence through detection by multiple algorithms, and (2) more thoroughly surveys the binding landscape by capturing peaks not detected by individual callers. Final analysis results are then integrated into a single output table, enabling users to explore their data by applying selectivity and sensitivity thresholds that best address their biological questions, without needing any additional reprocessing. ChIP-AP therefore presents investigators with a more comprehensive coverage of the binding landscape without requiring additional wet-lab observations.


Asunto(s)
Secuenciación de Inmunoprecipitación de Cromatina , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia de ADN/métodos , Algoritmos , Benchmarking , Línea Celular , Inmunoprecipitación de Cromatina , Programas Informáticos , Factores de Transcripción
2.
Sci Signal ; 14(709): eabh3839, 2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34784250

RESUMEN

Thyroid hormone (TH) action is essential for hepatic lipid synthesis and oxidation. Analysis of hepatocyte-specific thyroid receptor ß1 (TRß1) knockout mice confirmed a role for TH in stimulating de novo lipogenesis and fatty acid oxidation through its nuclear receptor. Specifically, TRß1 and its principal corepressor NCoR1 in hepatocytes repressed de novo lipogenesis, whereas the TH-mediated induction of lipogenic genes depended on the transcription factor ChREBP. Mice with a hepatocyte-specific deficiency in ChREBP lost TH-mediated stimulation of the lipogenic program, which, in turn, impaired the regulation of fatty acid oxidation. TH regulated ChREBP activation and recruitment to DNA, revealing a mechanism by which TH regulates specific signaling pathways. Regulation of the lipogenic pathway by TH through ChREBP was conserved in hepatocytes derived from human induced pluripotent stem cells. These results demonstrate that TH signaling in the liver acts simultaneously to enhance both lipogenesis and fatty acid oxidation.


Asunto(s)
Células Madre Pluripotentes Inducidas , Lipogénesis , Hormonas Tiroideas , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Lipogénesis/genética , Hígado/metabolismo , Ratones , Hormonas Tiroideas/metabolismo
3.
Leukemia ; 35(12): 3371-3382, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34120146

RESUMEN

Leukemic stem cells (LSCs) can acquire non-mutational resistance following drug treatment leading to therapeutic failure and relapse. However, oncogene-independent mechanisms of drug persistence in LSCs are incompletely understood, which is the primary focus of this study. We integrated proteomics, transcriptomics, and metabolomics to determine the contribution of STAT3 in promoting metabolic changes in tyrosine kinase inhibitor (TKI) persistent chronic myeloid leukemia (CML) cells. Proteomic and transcriptional differences in TKI persistent CML cells revealed BCR-ABL-independent STAT3 activation in these cells. While knockout of STAT3 inhibited the CML cells from developing drug-persistence, inhibition of STAT3 using a small molecule inhibitor sensitized the persistent CML cells to TKI treatment. Interestingly, given the role of phosphorylated STAT3 as a transcription factor, it localized uniquely to genes regulating metabolic pathways in the TKI-persistent CML stem and progenitor cells. Subsequently, we observed that STAT3 dysregulated mitochondrial metabolism forcing the TKI-persistent CML cells to depend on glycolysis, unlike TKI-sensitive CML cells, which are more reliant on oxidative phosphorylation. Finally, targeting pyruvate kinase M2, a rate-limiting glycolytic enzyme, specifically eradicated the TKI-persistent CML cells. By exploring the role of STAT3 in altering metabolism, we provide critical insight into identifying potential therapeutic targets for eliminating TKI-persistent LSCs.


Asunto(s)
Resistencia a Antineoplásicos , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Metaboloma , Células Madre Neoplásicas/efectos de los fármacos , Factor de Transcripción STAT3/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Transcriptoma , Animales , Apoptosis , Femenino , Glucólisis , Leucemia Mielógena Crónica BCR-ABL Positiva/genética , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/patología , Masculino , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción STAT3/genética
4.
Blood ; 138(15): 1331-1344, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33971010

RESUMEN

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here, we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA and DNA interactions with the broadly expressed Runt-related transcription factor 1 (RUNX1), we identified the long noncoding RNA (lncRNA) originating from the upstream regulatory element of PU.1 (LOUP). This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia (AML), wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein, RUNX1-ETO, limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell-type-specific RNAs and transcription factors, as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusión Oncogénica/genética , ARN Largo no Codificante/genética , Proteína 1 Compañera de Translocación de RUNX1/genética , Línea Celular Tumoral , Regulación Leucémica de la Expresión Génica , Humanos , Activación Transcripcional
5.
Cell Rep ; 28(2): 302-311.e5, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291568

RESUMEN

The bone marrow microenvironment is composed of heterogeneous cell populations of non-hematopoietic cells with complex phenotypes and undefined trajectories of maturation. Among them, mesenchymal cells maintain the production of stromal, bone, fat, and cartilage cells. Resolving these unique cellular subsets within the bone marrow remains challenging. Here, we used single-cell RNA sequencing of non-hematopoietic bone marrow cells to define specific subpopulations. Furthermore, by combining computational prediction of the cell state hierarchy with the known expression of key transcription factors, we mapped differentiation paths to the osteocyte, chondrocyte, and adipocyte lineages. Finally, we validated our findings using lineage-specific reporter strains and targeted knockdowns. Our analysis reveals differentiation hierarchies for maturing stromal cells, determines key transcription factors along these trajectories, and provides an understanding of the complexity of the bone marrow microenvironment.


Asunto(s)
Médula Ósea/metabolismo , Nicho de Células Madre/fisiología , Diferenciación Celular , Humanos
6.
Elife ; 62017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29091029

RESUMEN

Insulin resistance results from an intricate interaction between genetic make-up and environment, and thus may be orchestrated by epigenetic mechanisms like DNA methylation. Here, we demonstrate that DNA methyltransferase 3a (Dnmt3a) is both necessary and sufficient to mediate insulin resistance in cultured mouse and human adipocytes. Furthermore, adipose-specific Dnmt3a knock-out mice are protected from diet-induced insulin resistance and glucose intolerance without accompanying changes in adiposity. Unbiased gene profiling studies revealed Fgf21 as a key negatively regulated Dnmt3a target gene in adipocytes with concordant changes in DNA methylation at the Fgf21 promoter region. Consistent with this, Fgf21 can rescue Dnmt3a-mediated insulin resistance, and DNA methylation at the FGF21 locus was elevated in human subjects with diabetes and correlated negatively with expression of FGF21 in human adipose tissue. Taken together, our data demonstrate that adipose Dnmt3a is a novel epigenetic mediator of insulin resistance in vitro and in vivo.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Resistencia a la Insulina , Adipocitos/metabolismo , Animales , Células Cultivadas , ADN (Citosina-5-)-Metiltransferasas/genética , ADN Metiltransferasa 3A , Perfilación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados
7.
Proc Natl Acad Sci U S A ; 114(40): E8458-E8467, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923959

RESUMEN

Nuclear receptor corepressor 1 (NCoR1) is considered to be the major corepressor that mediates ligand-independent actions of the thyroid hormone receptor (TR) during development and in hypothyroidism. We tested this by expressing a hypomorphic NCoR1 allele (NCoR1ΔID), which cannot interact with the TR, in Pax8-KO mice, which make no thyroid hormone. Surprisingly, abrogation of NCoR1 function did not reverse the ligand-independent action of the TR on many gene targets and did not fully rescue the high mortality rate due to congenital hypothyroidism in these mice. To further examine NCoR1's role in repression by the unliganded TR, we deleted NCoR1 in the livers of euthyroid and hypothyroid mice and examined the effects on gene expression and enhancer activity measured by histone 3 lysine 27 (H3K27) acetylation. Even in the absence of NCoR1 function, we observed strong repression of more than 43% of positive T3 (3,3',5-triiodothyronine) targets in hypothyroid mice. Regulation of approximately half of those genes correlated with decreased H3K27 acetylation, and nearly 80% of these regions with affected H3K27 acetylation contained a bona fide TRß1-binding site. Moreover, using liver-specific TRß1-KO mice, we demonstrate that hypothyroidism-associated changes in gene expression and histone acetylation require TRß1. Thus, many of the genomic changes mediated by the TR in hypothyroidism are independent of NCoR1, suggesting a role for additional signaling modulators in hypothyroidism.


Asunto(s)
Hipotiroidismo/patología , Hígado/patología , Mutación , Co-Represor 1 de Receptor Nuclear/fisiología , Receptores beta de Hormona Tiroidea/fisiología , Hormonas Tiroideas/metabolismo , Acetilación , Animales , Células Cultivadas , Regulación de la Expresión Génica , Histonas/metabolismo , Hipotiroidismo/genética , Hipotiroidismo/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Regiones Promotoras Genéticas , Transducción de Señal
8.
Cell ; 170(1): 199-212.e20, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666119

RESUMEN

Type 2 diabetes (T2D) affects Latinos at twice the rate seen in populations of European descent. We recently identified a risk haplotype spanning SLC16A11 that explains ∼20% of the increased T2D prevalence in Mexico. Here, through genetic fine-mapping, we define a set of tightly linked variants likely to contain the causal allele(s). We show that variants on the T2D-associated haplotype have two distinct effects: (1) decreasing SLC16A11 expression in liver and (2) disrupting a key interaction with basigin, thereby reducing cell-surface localization. Both independent mechanisms reduce SLC16A11 function and suggest SLC16A11 is the causal gene at this locus. To gain insight into how SLC16A11 disruption impacts T2D risk, we demonstrate that SLC16A11 is a proton-coupled monocarboxylate transporter and that genetic perturbation of SLC16A11 induces changes in fatty acid and lipid metabolism that are associated with increased T2D risk. Our findings suggest that increasing SLC16A11 function could be therapeutically beneficial for T2D. VIDEO ABSTRACT.


Asunto(s)
Diabetes Mellitus Tipo 2/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , Basigina/metabolismo , Membrana Celular/metabolismo , Cromosomas Humanos Par 17/metabolismo , Técnicas de Silenciamiento del Gen , Haplotipos , Hepatocitos/metabolismo , Heterocigoto , Código de Histonas , Humanos , Hígado/metabolismo , Modelos Moleculares , Transportadores de Ácidos Monocarboxílicos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...