Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
ACS Appl Mater Interfaces ; 16(25): 32334-32343, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38861694

RESUMEN

Transition metal thiophosphates (MTPs) are a group of emerging van der Waals materials with widely tunable band gaps. In the MTP family, CdPSe3 is demonstrated to possess a wide energy band gap and high carrier mobility, making it a potential candidate in optoelectronic applications. Here, we reported photoelectric response behaviors of both CdPSe3- and CdPSe3/MoS2-based photodetectors (noted as CPS and CM, respectively); these showed prominent photoelectric performances, and the latter proved to be significantly superior to the former. These devices exhibited ultralow dark current at a magnitude order of 10-12 A and fine cycle and air stabilities. Compared with CPS, CM demonstrated the highest responsivity (91.12 mA/W) and detectivity (1.74 × 1011 Jones) at 5 V under 425 nm light illumination. Besides, CM showed self-powered photoelectric responses at zero bias, which was attributed to the improved separation efficiency of photogenerated carriers by the built-in electric field at the interface of the p-n junction. This work proves a prospect for the CM device in portable, self-powered optoelectronic device applications.

2.
Plant Biotechnol J ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816933

RESUMEN

Multiple distinct specialized regions shape the architecture of maize leaves. Among them, the fringe-like and wedge-shaped auricles alter the angle between the leaf and stalk, which is a key trait in crop plant architecture. As planting density increased, a small leaf angle (LA) was typically selected to promote crop light capture efficiency and yield. In the present study, we characterized two paralogous INDETERMINATE DOMAIN (IDD) genes, ZmIDD14 and ZmIDD15, which contain the Cys2-His2 zinc finger domain and function redundantly to regulate auricle development and LA in maize. Loss-of-function mutants showed decreased LA by reducing adaxial sclerenchyma thickness and increasing the colourless cell layers. In addition, the idd14;idd15 double mutant exhibited asymmetrically smaller auricles, which might cause by a failed maintenance of symmetric expression of the key auricle size controlling gene, LIGULELESS(LG1). The transcripts of ZmIDD14 and ZmIDD15 enriched in the ligular region, where LG1 was highly expressed, and both proteins physically interacted with ZmILI1 to promote LG1 transcription. Notably, the idd14;idd15 enhanced the grain yield of hybrids under high planting densities by shaping the plant architecture with a smaller LA. These findings demonstrate the functions of ZmIDD14 and ZmIDD15 in controlling the abaxial/adaxial development of sclerenchyma in the midrib and polar development along the medial-lateral axes of auricles and provide an available tool for high-density and high-yield breeding in maize.

3.
Gastroenterology ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38636680

RESUMEN

BACKGROUND & AIMS: High expression of phosphatidylinositol 4-kinase III alpha (PI4KIIIα) correlates with poor survival rates in patients with hepatocellular carcinoma. In addition, hepatitis C virus (HCV) infections activate PI4KIIIα and contribute to hepatocellular carcinoma progression. We aimed at mechanistically understanding the impact of PI4KIIIα on the progression of liver cancer and the potential contribution of HCV in this process. METHODS: Several hepatic cell culture and mouse models were used to study the functional importance of PI4KIIIα on liver pathogenesis. Antibody arrays, gene silencing, and PI4KIIIα-specific inhibitor were applied to identify the involved signaling pathways. The contribution of HCV was examined by using HCV infection or overexpression of its nonstructural protein. RESULTS: High PI4KIIIα expression and/or activity induced cytoskeletal rearrangements via increased phosphorylation of paxillin and cofilin. This led to morphologic alterations and higher migratory and invasive properties of liver cancer cells. We further identified the liver-specific lipid kinase phosphatidylinositol 3-kinase C2 domain-containing subunit gamma (PIK3C2γ) working downstream of PI4KIIIα in regulation of the cytoskeleton. PIK3C2γ generates plasma membrane phosphatidylinositol 3,4-bisphosphate-enriched, invadopodia-like structures that regulate cytoskeletal reorganization by promoting Akt2 phosphorylation. CONCLUSIONS: PI4KIIIα regulates cytoskeleton organization via PIK3C2γ/Akt2/paxillin-cofilin to favor migration and invasion of liver cancer cells. These findings provide mechanistic insight into the contribution of PI4KIIIα and HCV to the progression of liver cancer and identify promising targets for therapeutic intervention.

4.
Small ; 20(26): e2310226, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38308112

RESUMEN

Organic afterglow materials have significant applications in information security and flexible electronic devices with unique optical properties. It is vital but challenging to develop organic afterglow materials possessing controlled output with multi-stimuli-responsive capacity. Herein, dimethyl terephthalate (DTT) is introduced as a strong proton acceptor. The migration direction of N─H protons on two compounds Hs can be regulated by altering the excitation wavelength (Ex) or amine stimulation, thereby achieving dual-stimuli-responsive afterglow emission. When the Ex is below 300 nm, protons migrate to S1-2 DTT, where strong interactions induce phosphorescent emission of Hs, resulting in afterglow behavior. Conversely, when the Ex is above 300 nm, protons interact with the S0 DTT weakly and the afterglow disappears. In view of amine-based compounds with higher proton accepting capabilities, it can snatch proton from S1-2 DTT and redirect the proton flow toward amine, effectively suppressing the afterglow but obtaining a new redshifted fluorescence emission with Δλ over 200 nm due to the high polarity of amine. Moreover, it is successfully demonstrated that the applications of dual-stimuli-responsive organic afterglow materials in information encryption based on the systematic excitation-wavelength-dependent (Ex-De) behavior and amine selectivity detection.

5.
J Phys Chem Lett ; 15(5): 1355-1362, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38286019

RESUMEN

The strong Lewis acid tin halide leads to an excessively fast crystallization rate, resulting in more defects in the film and degraded device performance. In this work, a cesium acetate (CsAc) pre-buried poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layer acts as nucleation points during the crystallization of tin-based perovskite, which can induce preferential orientation growth of crystals and increase the grain size to improve the quality of crystallization. The addition of CsAc not only can increase the conductivity of PEDOT:PSS but also can improve the wettability of the perovskite precursor solution to enhance the interface contact between the hole transport layer and perovskite layer. Because of the incorporation of CsAc in PEDOT:PSS, the average short-circuit current density increases from 23.80 to 27.60 mA cm-2. Furthermore, a power conversion efficiency of 10.99% is achieved for a tin-based perovskite solar cell with CsAc-doped PEDOT:PSS as the hole transport layer.

7.
BMC Musculoskelet Disord ; 24(1): 756, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37749526

RESUMEN

BACKGROUND: Both closed platform and open platform robotic-assisted total hip arthroplasty (THA) have recently been recommended as a viable treatment option for achieving accurate positioning of components. Yet, limited studies paid attention to the differences between the closed platform robotic system and the open platform robotic system. Hence, this study aimed to investigate clinical outcomes, radiographic outcomes, complication rates and learning curve of two systems. MATERIALS AND METHODS: We retrospectively included 62 patients (31 closed robotic system and 31 open robotic system) who underwent THA between February 2021 and January 2023. The demographics, operating time, cup positioning, complications and hip Harris score were evaluated. Learning curves of operation time was conducted using cumulative sum (CUSUM) analysis. RESULTS: There were no differences in surgical time (76.7 ± 12.1 min vs. 72.3 ± 14.8 min), estimated blood loss (223.2 ± 13.2 ml vs. 216.9 ± 17 ml) and Harris Hip score (HHS) between closed platform robotic system and the open platform robotic system. The closed robotic system and the open robotic system were associated with a learning curve of 9 cases and 7 cases for surgical time respectively, based on the satisfying rate of Lewinnek's safe zone outliers (1/31, 96.8%) and no occurrence of complication. Both robotic systems had significant reduction in overall surgical time, the duration of acetabulum registration, and estimated blood loss between learning phase and proficiency phase. CONCLUSION: The authors suggest that the surgical outcomes and safe zone outlier rate of the open robotic-assisted THA were similar to those of the closed robotic-assisted THA. These two robotic-assisted are associated with comparable learning curves and both have the precise positioning of acetabular component. From learning phase to proficiency phase, the rate of positions within the safe zone differed only marginally (88.9-100% vs. 85.7-100%) based on a rather low number of patients. This is not a statistically significant difference. Therefore, we suggest that THA undergoing with the robotic-assisted system is the relatively useful way to achieve planned acetabular cup position so far.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Procedimientos Quirúrgicos Robotizados , Humanos , Curva de Aprendizaje , Artroplastia de Reemplazo de Cadera/efectos adversos , Estudios Retrospectivos , Procedimientos Quirúrgicos Robotizados/efectos adversos , Acetábulo
8.
ACS Appl Mater Interfaces ; 15(35): 41680-41687, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37615302

RESUMEN

Distinct doping propagation characteristics between p-doping and n-doping in light-emitting electrochemical cells (LECs) have been highlighted by intensive reports. Typically, there are significant differences in the doping speeds between p-doping and n-doping, with the former exhibiting a sawtooth frontier and the latter displaying a more uniform frontier profile. In addition, experimental observations demonstrate a uniform motion instead of the theoretically suggested accelerated electrochemical doping frontier propagation. Therefore, there is an urgent need to establish a quantitative model that delves into the underlying mechanisms responsible for doping propagation in LECs. In this study, four variables were selected to investigate the detailed mechanism of electrochemical doping propagation: temperature, voltage, and concentrations of salt and solid electrolyte. Fluorescence imaging revealed that the n-doping and p-doping propagations behaved contrarily with increasing temperature and voltage. By numerically fitting the doping propagation frontier, equations were derived to describe the relationship between the speed of electrochemical doping propagation and temperature/voltage. The underlying mechanisms were elucidated, indicating that anions undergo motion through the cooperative effects of electric field drift and concentration diffusion, while cation transport strongly relies on poly(ethylene oxide) (PEO) segmental motions. In other words, the movement of anions within the electrolyte is characterized by a greater degree of freedom, whereas the motion of cations is significantly dependent on the segmental motions of PEO. The resulting equations were well-fitted with experimental data, providing a solid foundation for further theoretical investigations into electrochemical doping in various devices.

9.
Environ Res ; 232: 116388, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37308071

RESUMEN

One-dimensional shaped ZnGa2O4, ZnO and ZnGa2O4/ZnO nanofibers were successfully prepared by electrostatic spinning technique and the photocatalytic degradation performance of tetracycline hydrochloride (TC-HCl) were studied. It was found that the S-scheme heterojunction formed in the ZnGa2O4/ZnO could greatly reduce the recombination of the photogenerated carriers and therefore improve the photocatalytic performance. By optimizing the ratio of the ZnGa2O4 and ZnO, the largest degradation rate could reach 0.0573 min-1, which was 20 times of the self-degradation rate of TC-HCl. It was verified that the h+ played the key role in the reactive groups for the high performance decomposition of TC-HCl by capture experiments. This work provides a new method for the highly efficient photocatalytic degradation of TC-HCl.


Asunto(s)
Nanofibras , Óxido de Zinc , Tetraciclina
10.
Insights Imaging ; 14(1): 56, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37005950

RESUMEN

BACKGROUND: Hepatic epithelioid hemangioendothelioma (HEH) is extremely rare, and CT features have never been analyzed in a large group of patients. METHODS: A retrospective study was designed to review the contrast-enhanced CT images of HEH patients. Intrahepatic lesions were categorized into three types: nodular, locally coalescent (coalescent lesion contained in one segment) or diffusely coalescent (coalescent lesion occupied more than one segment). CT features were compared among lesions of different sizes and patients with different lesion types. RESULTS: A total of 93 HEH patients were included in this study, and 740 lesions were analyzed. The results of per-lesion analysis showed that medium lesions (2-5 cm) had the highest rate of lollipop sign (16.8%) and target-like enhancement (43.1%), while lesions in large group (> 5 cm) had the highest rate of capsular retraction (38.8%) and vascular invasion (38.8%). The differences on enhancement pattern and the rates of lollipop sign and capsular retraction were significant among lesions of different sizes (p < 0.001, respectively). The results of per-patient analysis showed that patients in locally coalescent group had the highest rates of lollipop sign (74.3%) and target sign (94.3%). All patients in diffusely coalescent group had capsular retraction and vascular invasion. CT appearances of capsular retraction, lollipop sign, target sign and vascular invasion differed significantly among patients with different lesion types (p < 0.001, p = 0.005, p = 0.006 and p < 0.001, respectively). CONCLUSION: CT features variated among HEH patients with different lesion types, and radiological appearances of HEH should be classified into nodular type, locally coalescent type and diffusely coalescent type.

11.
Radiother Oncol ; 184: 109683, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37120102

RESUMEN

PURPOSE: Aim to create and validate a comprehensive nomogram capable of accurately predicting the transition from moderate-severe to normal-mild xerostomia post-radiotherapy (postRT) in patients with nasopharyngeal carcinoma (NPC). MATERIALS AND METHODS: We constructed and internally verified a prediction model using a primary cohort comprising 223 patients who were pathologically diagnosed with NPC from February 2016 to December 2019. LASSO regression model was used to identify the clinical factors and relevant variables (the pre-radiotherapy (XQ-preRT) and immediate post-radiotherapy (XQ-postRT) xerostomia questionnaire scores, as well as the mean dose (Dmean) delivered to the parotid gland (PG), submandibular gland (SMG), sublingual gland (SLG), tubarial gland (TG), and oral cavity). Cox proportional hazards regression analysis was performed to develop the prediction model, which was presented as a nomogram. The models' performance with regard to calibration, discrimination, and clinical usefulness was evaluated. The external validation cohort comprised 78 patients. RESULTS: Due to better discrimination and calibration in the training cohort, age, gender, XQ-postRT, and Dmean of PG, SMG, and TG were included in the individualized prediction model (C-index of 0.741 (95% CI:0.717 to 0.765). Verification of the nomogram's performance in internal and external validation cohorts revealed good discrimination (C-index of 0.729 (0.692 to 0.766) and 0.736 (0.702 to 0.770), respectively) and calibration. Decision curve analysis revealed that the nomogram was clinically useful. The 12-month and 24-month moderate-severe xerostomia rate was statistically lower in the SMG-spared arm (28.4% (0.230 to 35.2) and 5.2% (0.029 to 0.093), respectively) than that in SMG-unspared arm (56.8% (0.474 to 0.672) and 12.5% (0.070 to 0.223), respectively), with an HR of 1.84 (95%CI: 1.412 to 2.397, p = 0.000). The difference in restricted mean survival time for remaining moderate-severe xerostomia between the two arms at 24 months was 5.757 months (95% CI, 3.863 to 7.651; p = 0.000). CONCLUSION: The developed nomogram, incorporating age, gender, XQ-postRT, and Dmean to PG, SMG, and TG, can be used for predicting recovery from moderate-severe xerostomia post-radiotherapy in NPC patients. Sparing SMG is highly important for the patient's recovery.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Nasofaríngeas , Radioterapia de Intensidad Modulada , Xerostomía , Humanos , Carcinoma Nasofaríngeo/radioterapia , Neoplasias de Cabeza y Cuello/etiología , Nomogramas , Radioterapia de Intensidad Modulada/efectos adversos , Xerostomía/etiología , Neoplasias Nasofaríngeas/radioterapia
12.
J Hepatol ; 79(3): 645-656, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37121436

RESUMEN

BACKGROUND & AIMS: Hepatitis A virus (HAV) infections are considered not to trigger innate immunity in vivo, in contrast to hepatitis C virus (HCV). This lack of induction has been imputed to strong interference by HAV proteases 3CD and 3ABC. We aimed to elucidate the mechanisms of immune activation and counteraction by HAV and HCV in vivo and in vitro. METHODS: Albumin-urokinase-type plasminogen activator/severe combined immunodeficiency (Alb/uPA-SCID) mice with humanised livers were infected with HAV and HCV. Hepatic cell culture models were used to assess HAV and HCV sensing by Toll-like receptor 3 and retinoic acid-inducible gene I/melanoma differentiation-associated protein 5 (RIG-I/MDA5), respectively. Cleavage of the adaptor proteins TIR-domain-containing adapter-inducing interferon-ß (TRIF) and mitochondrial antiviral-signalling protein (MAVS) was analysed by transient and stable expression of HAV and HCV proteases and virus infection. RESULTS: We detected similar levels of interferon-stimulated gene induction in hepatocytes of HAV- and HCV-infected mice with humanised liver. In cell culture, HAV induced interferon-stimulated genes exclusively upon MDA5 sensing and depended on LGP2 (laboratory of genetics and physiology 2). TRIF and MAVS were only partially cleaved by HAV 3ABC and 3CD, not sufficiently to abrogate signalling. In contrast, HCV NS3-4A efficiently degraded MAVS, as previously reported, whereas TRIF cleavage was not detected. CONCLUSIONS: HAV induces an innate immune response in hepatocytes via MDA5/LGP2, with limited control of both pathways by proteolytic cleavage. HCV activates Toll-like receptor 3 and lacks TRIF cleavage, suggesting that this pathway mainly contributes to HCV-induced antiviral responses in hepatocytes. Our results shed new light on the induction of innate immunity and counteraction by HAV and HCV. IMPACT AND IMPLICATIONS: Understanding the mechanisms that determine the differential outcomes of HAV and HCV infections is crucial for the development of effective therapies. Our study provides insights into the interplay between these viruses and the host innate immune response in vitro and in vivo, shedding light on previously controversial or only partially investigated aspects. This knowledge could tailor the development of new strategies to combat HCV persistence, as well as improve our understanding of the factors underlying successful HAV clearance.


Asunto(s)
Hepatitis A , Hepatitis C , Evasión Inmune , Inmunidad Innata , Virus de la Hepatitis A , Hepacivirus , Animales , Ratones , Ratones SCID
13.
J Phys Chem Lett ; 14(8): 2223-2233, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36820508

RESUMEN

The fabrication of organic-inorganic perovskite field-effect transistors (FETs) with polymer gate dielectrics is challenging because of the solvent corrosion and wettability issues at interfaces. A few polymers have been integrated into perovskite transistors; however, these devices have high operating voltages due to low dielectric constants. Herein, poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) with a high dielectric constant is introduced into bottom-gate phenylethylammonium tin iodide perovskite [(PEA)2SnI4] FETs. Polytetrafluoroethylene (PTFE) and cross-linked poly(4-vinylphenol) (PVP) (CL-PVP) are used to address the issues of solvent corrosion and wettability. We design the PVDF-TrFE/PTFE and PVDF-TrFE/PTFE/CL-PVP dielectric layers, where the ferroelectric properties of PVDF-TrFE are reduced by PTFE. The (PEA)2SnI4 FETs operate at relatively low gate voltages, exhibiting good overall performance with average hole mobilities of 0.42 and 0.36 cm2 V-1 s-1. Our findings provide a feasible strategy for constructing low-operating-voltage perovskite FETs with large-dielectric-constant ferroelectric polymers as gate dielectrics by a solution processing technique.

14.
Chinese Pharmacological Bulletin ; (12): 1835-1839, 2023.
Artículo en Chino | WPRIM (Pacífico Occidental) | ID: wpr-1013691

RESUMEN

Aim To explore the effect of tanshinone II A (Tan II A) on reverse cholesterol transport in atherosclerosis model mice and RAW264. 7 cells and the underlying mechanism. Methods Thirty-two male LDLR -/- mice were randomly divided into four groups. These mice were fed with normal diet or high fat diet for 12 weeks. The control group and model group were given normal saline. Tan II A group and atorvastatin group were given Tan II A solution and atorvastatin solution for 12 weeks. RAW264. 7 cells were induced with oxidized low-density lipoprotein (ox-LDL) 100 mg • L-

15.
ACS Appl Mater Interfaces ; 14(51): 57082-57091, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36523155

RESUMEN

Organic phototransistors (OPTs) based on polymers have attracted substantial attention due to their excellent signal amplification, significant noise reduction, and solution process. Recently, the near-infrared (NIR) detection becomes urgent for OPTs with the increased demand for biomedicine, medical diagnostics, and health monitoring. To achieve this goal, a low working voltage of the OPTs is highly desirable. Therefore, the traditional dielectric gate can be replaced by an electrolyte gate to form electrolyte-gated organic phototransistors (EGOPTs), which are not only able to work at voltages below 1.0 V but also are biocompatible. PCDTPT, one of the most popular narrow band gap donor-acceptor copolymer, has been rarely studied in EGOPTs. In this work, an organic NIR-sensitive EGOPT based on PCDTPT is demonstrated with the detectivity of 7.08 × 1011 Jones and the photoresponsivity of 3.56 A/W at a low operating voltage. In addition, an existing persistent photoconductivity (PPC) phenomenon was also observed when the device was exposed to air. The PPC characteristic of the EGOPT in air has been used to achieve a phototransistor memory, and the gate bias can directly eliminate the PPC as an erasing operation. This work reveals the underlying mechanism of the electrolyte-gated organic phototransistor memories and broadens the application of the EGOPTs.

16.
Hereditas ; 159(1): 46, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36529808

RESUMEN

BACKGROUND: The bitter taste receptor gene TAS2R38 is a member of the human TAS2R gene family. Polymorphisms in TAS2R38 affect the ability to taste the bitterness of phenylthiourea (PTC) compounds, thus affecting an individual's food preference and health status. METHODS: We investigated polymorphisms in the TAS2R38 gene and the sensitivity to PTC bitterness among healthy Chinese college students in Hubei province. The association of TAS2R38 polymorphisms and PTC sensitivity with body mass index (BMI), food preference, and health status was also analyzed. A total of 320 healthy college students were enrolled (male: 133, female: 187; aged 18-23 years). The threshold value method was used to measure the perception of PTC bitterness, and a questionnaire was used to analyze dietary preferences and health status. Polymerase chain reaction (PCR) was used to analyze polymorphisms at three common TAS2R38 loci (rs713598, rs1726866, and rs10246939). RESULTS: In our study population, 65.00% of individuals had medium sensitivity to the bitterness of PTC; in contrast, 20.94% were highly sensitive to PTC bitterness, and 14.06% were not sensitive. For the TAS2R38 gene, the PAV/PAV and PAV/AAI diplotypes were the most common (42.19% and 40.63%, respectively), followed by the homozygous AVI/AVI (8.75%) and PAV/AVI (5.00%) diplotypes. CONCLUSION: There was a significant correlation between the sensitivity to PTC bitterness and sex, but there was no correlation between the common diplotypes of TAS2R38 and gender. Polymorphisms in the TAS2R38 gene were associated with the preference for tea, but not with one's native place, BMI, health status, or other dietary preferences. There was no significant correlation between the perception of PTC bitterness and one's native place, BMI, dietary preference, or health status. We hope to find out the relationship between PTC sensitivity and TAS2R38 gene polymorphisms and dietary preference and health status of Chinese population through this study, providing relevant guidance and suggestions for dietary guidance and prevention of some chronic diseases in Chinese population.


Asunto(s)
Feniltiourea , Receptores Acoplados a Proteínas G , Gusto , Femenino , Humanos , Masculino , Pueblo Asiatico/genética , Receptores Acoplados a Proteínas G/genética , Estudiantes , Gusto/genética
17.
Front Pharmacol ; 13: 1064498, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36467079

RESUMEN

Background: Abelmoschus manihot (L.) Medik ("Huangkui" in Chinese, HK) has been widely used for the treatment of kidney diseases. Nephrotoxicity is the side effect of cisplatin (CDDP), which greatly limits its clinical application. Therefore, CDDP could be used to establish the chronic kidney disease (CKD) model. However, the protective effects of HK on CDDP-induced CKD have not been investigated. Purpose: To explore the protective effect and underlying mechanisms of HK on multiple low-dose CDDP-induced CKD in rats by the integrated analysis of serum, kidney, and urine metabolomics and network pharmacology. Methods: The CKD model was induced by multiple low-dose CDDP. Body weight, organ index, serum biochemical, and kidney histology were examined to evaluate the effect of HK. Serum, kidney, and urine were collected and profiled by HILIC/RPLC-Q-TOF/MS-based metabolomics. Potential biomarkers (PBs) were screened according to the criteria of VIP >1, p < 0.01, and FC > 2, and then identified or assigned. The pathway analysis and PBs enrichment were conducted by MetaboAnalyst and ChemRICH. Furthermore, network pharmacology was adopted to dig out the active components and targets. Finally, the results from metabolomics and network pharmacology were integrated to confirm each other. Results: HK could recover the CDDP-induced abnormal pharmacological and metabolic profile changes. A total of 187 PBs were screened and identified from the serum, kidney, and urine metabolomics. Pathway analysis showed that multiple metabolic pathways, mainly related to amino acid and lipid metabolisms, were involved in the nephroprotective effect of HK, and especially, HK could significantly alleviate the disorder of tryptophan metabolism pathway in serum, kidney, and urine. Meanwhile, network pharmacology analysis revealed that 5 components in HK and 4 key genes could be responsible for the nephroprotection of HK, which also indicated that the metabolism of tryptophan played an important role in HK against CKD. Conclusion: HK has a nephroprotection on CDDP-induced CKD, mainly by restoring the dysregulation of tryptophan metabolism. Integrated analysis of serum, kidney, and urine metabolomics and network pharmacology was a powerful method for exploring pharmacological mechanisms and screening active components and targets of traditional Chinese medicine.

18.
Artículo en Inglés | MEDLINE | ID: mdl-36302180

RESUMEN

Two-dimensional (2D) layered organic-inorganic perovskites have great potential for fabricating field-effect transistors due to their unique structure that enables the horizontal transport of charge carriers in metal-halide octahedra, resembling the transport behavior in semiconducting channels. Their electronic band structures are mainly dominated by the metal-halide octahedra, which eventually determine the optical and electrical characteristics, whereas organic cations have no direct contributions but would impact the electronic structures via distorting the octahedra. So far, high performance has been achieved in 2D Sn perovskites compared to their Pb counterparts because the intrinsic differences of Sn promote transport properties. The champion hole mobility has been obtained in single-ring aromatic phenylethylammonium tin iodide perovskite [(PEA)2SnI4]. However, simple aliphatic monoammonium tin perovskites and their device applications have rarely been reported. Herein, 2D layered n-butylammonium tin iodide perovskite [(BA)2SnI4] thin films have been synthesized by a spin-coating approach. A structural phase transition occurs at about 225 K in the films, accompanied by the changes in the photoluminescence peak and exciton binding energy. Longitudinal optical (LO) phonons are found to govern the scattering of charge carriers and excitons via the Fröhlich interactions in the temperature range 77-300 K. The first-principles calculations predict that the perovskite has excellent transport characteristics comparable to those of molybdenum disulfide (MoS2) and methylammonium lead iodide perovskite (MAPbI3). The (BA)2SnI4 thin film field-effect transistors constructed on polymer dielectrics with a maximum hole mobility of 0.03 cm2 V-1 s-1 in ambient conditions have been successfully demonstrated for the first time. Our findings not only offer a deep insight into the physical properties of 2D layered aliphatic monoammonium tin perovskite thin films but also provide important experimental and theoretical guidance for their potential applications in lateral-type flexible optoelectronic devices.

19.
J Clin Med ; 11(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35629034

RESUMEN

Circular RNAs (circRNAs), a novel type of endogenous RNAs, have become a subject of intensive research. It has been found that circRNAs are important players in cell differentiation and tissue homeostasis, as well as disease development. Moreover, the expression of circRNAs is usually not correlated with their parental gene expression, indicating that they are not only a steady-state by-product of mRNA splicing but a product of variable splicing under novel regulation. Sequence conservation analysis has also demonstrated that circRNAs have important non-coding functions. CircRNAs exist as a covalently closed loop form in mammalian cells, where they regulate cellular transcription and translation processes. CircRNAs are built from pre-messenger RNAs, and their biogenesis involves back-splicing, which is catalyzed by spliceosomes. The splicing reaction gives rise to three different types of intronic, exotic and exon-intron circular RNAs. Due to higher nuclease stability and longer half lives in cells, circRNAs are more stable than linear RNAs and have enormous clinical advantage for use as diagnostic and therapeutic biomarkers for disease. In recent years, it has been reported that circRNAs in stem cells play a crucial role in stem cell function. In this article, we reviewed the general feature of circRNAs and the distinct roles of circRNAs in stem cell biology, including regulation of stem cell self-renewal and differentiation. CircRNAs have shown unique expression profiles during differentiation of stem cells and could serve as promising biomarkers of these cells. As circRNAs play pivotal roles in stem cell regulation as well as the development and progression of various diseases, we also discuss opportunities and challenges of circRNA-based treatment strategies in future effective therapies for promising clinical applications.

20.
RSC Adv ; 12(9): 5638-5647, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-35425538

RESUMEN

Low dark current density plays a key role in determining the overall performance of perovskite photodetectors (PPDs). To achieve this goal, a hole transport layer (HTL) on the ITO side and a hole blocking layer (HBL) on the metal electrode side are commonly introduced in PPDs. Unlike traditional approaches, we realized a high-performance solution-processed broadband PPD using metal oxide (MO) nanoparticles (NPs) as the HBL on the ITO electrode and PC61BM as another HBL on the metal electrode side to reduce the device dark current. The PPDs based on TiO2 and SnO2 NP-modified layers show similar device performances at -0.5 V: a greater than 105 on/off ratio; over 100 dB linear dynamic range (LDR) under different visible light illumination; around 0.2 A W-1 responsivity (R); greater than 1012 jones detectivity (D*); and ∼20 µs rise time of the device. The MO NP interfacial layer can significantly suppress charge injection in the dark, while the accumulated photogenerated charges at the interface between the MO layer and the perovskite layer introduce band bending, leading to dramatically increased current under illumination. Therefore, the dark current density of the devices is significantly reduced and the optical gain is drastically enhanced. However, after UV illumination, the dark current of the TiO2 device dramatically increases while the dark current of the SnO2 device can stay the same as before since the UV illumination-induced conductivity and barrier height changes in the TiO2 layer cannot recover after removing the UV irradiation. These results indicate that the TiO2 NP layer is suitable for making a vis-NIR photodetector, while the SnO2 NP layer is a good candidate for UV-vis-NIR photodetectors. The facile solution-processed high-performance perovskite photodetector using MO NP-modified ITO is highly compatible with low cost, flexible, and large-area electronics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...