Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Int J Biol Macromol ; 264(Pt 1): 130603, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447841

RESUMEN

DNA methyltransferases (Dnmts) are responsible for DNA methylation which influences patterns of gene expression and plays a crucial role in response to environmental changes. In this study, 7 LcDnmt genes were identified in the genome of large yellow croaker (Larimichthys crocea). The comprehensive analysis was conducted on gene structure, protein and location site of LcDnmts. LcDnmt proteins belonged to three groups (Dnmt1, Dnmt2, and Dnmt3) according to their conserved domains and phylogenetic analysis. Although Dnmt3 can be further divided into three sub groups (Dnmt3a, Dnmt3b, and Dnmt3l), there is no Dnmnt3l member in the large yellow croaker. Phylogenetic analysis revealed that the Dnmt family was highly conserved in teleosts. Expression patterns derived from the RNA-seq, qRT-PCR and Western blot analysis revealed that 2 LcDnmt genes (LcDnmt1 and LcDnmt3a2) significantly regulated under salinity stress in the liver, which was found to be dominantly expressed in the intestine and brain, respectively. These two genes may play an important role in the salinity stress of large yellow croaker and represent candidates for future functional analysis. Our results revealed the conservation of Dnmts during evolution and indicated a potential role of Dnmts in epigenetic regulation of response to salinity stress.


Asunto(s)
Metilación de ADN , Perciformes , Animales , Metilación de ADN/genética , Filogenia , Epigénesis Genética , Estrés Salino , ADN/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peces/química
2.
Artif Cells Nanomed Biotechnol ; 52(1): 156-174, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38423139

RESUMEN

Osteoarthritis (OA) is a degenerative disease closely associated with Anoikis. The objective of this work was to discover novel transcriptome-based anoikis-related biomarkers and pathways for OA progression.The microarray datasets GSE114007 and GSE89408 were downloaded using the Gene Expression Omnibus (GEO) database. A collection of genes linked to anoikis has been collected from the GeneCards database. The intersection genes of the differential anoikis-related genes (DEARGs) were identified using a Venn diagram. Infiltration analyses were used to identify and study the differentially expressed genes (DEGs). Anoikis clustering was used to identify the DEGs. By using gene clustering, two OA subgroups were formed using the DEGs. GSE152805 was used to analyse OA cartilage on a single cell level. 10 DEARGs were identified by lasso analysis, and two Anoikis subtypes were constructed. MEgreen module was found in disease WGCNA analysis, and MEturquoise module was most significant in gene clusters WGCNA. The XGB, SVM, RF, and GLM models identified five hub genes (CDH2, SHCBP1, SCG2, C10orf10, P FKFB3), and the diagnostic model built using these five genes performed well in the training and validation cohorts. analysing single-cell RNA sequencing data from GSE152805, including 25,852 cells of 6 OA cartilage.


Asunto(s)
Anoicis , Osteoartritis , Humanos , Anoicis/genética , Aprendizaje Automático , Cadherinas , Osteoartritis/diagnóstico , Osteoartritis/genética , Análisis de Secuencia de ARN , Proteínas Adaptadoras de la Señalización Shc
3.
Biochem Genet ; 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38376578

RESUMEN

Diabetic nephropathy (DN) threatens the survival quality of patients, with complex pathogenesis. Circular RNA (circRNA) dysregulation occurs in DN development. This work aimed to investigate the role of circ-Luc7l in DN cell models and related molecular mechanisms. The expression of circ-Luc7l, microRNA (miR)-205-5p, and transforming growth factor-beta receptor 1 (Tgfbr1) was examined by real-time quantitative PCR (RT-qPCR). Cell viability and proliferation were detected by Cell Counting Kit-8 (CCK-8) assay and EdU assay. The expression of extracellular matrix (ECM)-related markers and Tgrbr1 protein was measured by Western blot. The binding between miR-205-5p and circ-Luc7l or Tgfbr1 was validated by dual-luciferase reporter assay, RNA immunoprecipitation (RIP) assay, or RNA pull-down assay. Experimental animal models were established to elucidate the function of circ-Luc7l in vivo. Circ-Luc7l expression was notably enhanced in high glucose (HG)-treated mesangial cells. Knockdown of circ-Luc7l attenuated HG-induced cell proliferation, inflammation, and ECM accumulation in vitro and relieved inflammation and ECM accumulation of kidneys of diabetic mice in vivo. Circ-Luc7l targeted miR-205-5p, and miR-205-5p inhibition rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. MiR-205-5p bound to Tgfbr1 whose expression was negatively regulated by circ-Luc7l. Tgfbr1 overexpression also rescued the depletion effects of circ-Luc7l knockdown on cell proliferation, inflammation, and ECM accumulation. In HG conditions, increased circ-Luc7l upregulated Tgfbr1 expression via targeting miR-205-5p to induce DN progression.

4.
Endocrine ; 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334891

RESUMEN

CONTEXT: Insulinoma is a neuroendocrine tumor derived from pancreatic ß -cells whose clinical manifestation is recurrent hypoglycemia. Insulinoma in a patient with preexisting diabetes is extraordinarily rare, and the unmasking of type 2 diabetes (T2DM) after insulinoma surgery is even rarer. CASE REPORT: This article reports a 49-year-old male patient with insulinoma that masked the diagnosis of T2DM. The patient was admitted to the hospital with symptoms of hypoglycemia, such as repeated sweating, palpitations, and asthenia for over 4 years. The patient was diagnosed with insulinoma after completing relevant examinations. The emergence of hyperglycemia after the removal of insulinoma is attributable to the coexistence of T2DM. Surprisingly, a reversible decrease in cortisol levels was observed during the diagnostic process. We searched the previously published reports of this type of case from PubMed to determine why type 2 diabetes was covered by insulinoma and why glucocorticoids decreased. CONCLUSIONS: The diagnosis of T2DM in the patient after surgery may be related to increased food intake and insulin resistance induced by hyperinsulinemia caused by long-term hypoglycemia. The reversible decrease in cortisol levels, not adrenocortical insufficiency during the diagnostic process, may be caused by a transient abnormality in glucose counterregulation.

5.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38197767

RESUMEN

The Thomson parabola ion spectrometer is vulnerable to intense electromagnetic pulses (EMPs) generated by a high-power laser interacting with solid targets. A metal shielding cage with a circular aperture of 1 mm diameter is designed to mitigate EMPs induced by a picosecond laser irradiating a copper target in an experiment where additionally an 8-ns delayed nanosecond laser is incident into an aluminum target at the XG-III laser facility. The implementation of the shielding cage reduces the maximum EMP amplitude inside the cage to 5.2 kV/m, and the simulation results indicate that the cage effectively shields electromagnetic waves. However, the laser-accelerated relativistic electrons which escaped the target potential accumulate charge on the surface of the cage, which is responsible for the detected EMPs within the cage. To further alleviate EMPs, a lead wall and an absorbing material (ECCOSORB AN-94) were added before the cage, significantly blocking the propagation of electrons. These findings provide valuable insights into EMP generation in large-scale laser infrastructures and serve as a foundation for electromagnetic shielding design.

6.
Comput Softw Big Sci ; 8(1): 2, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38179112

RESUMEN

Missing transverse momentum is a crucial observable for physics at hadron colliders, being the only constraint on the kinematics of "invisible" objects such as neutrinos and hypothetical dark matter particles. Computing missing transverse momentum at the highest possible precision, particularly in experiments at the energy frontier, can be a challenging procedure due to ambiguities in the distribution of energy and momentum between many reconstructed particle candidates. This paper describes a novel solution for efficiently encoding information required for the computation of missing transverse momentum given arbitrary selection criteria for the constituent reconstructed objects. Pileup suppression using information from both the calorimeter and the inner detector is an integral component of the reconstruction procedure. Energy calibration and systematic variations are naturally supported. Following this strategy, the ATLAS Collaboration has been able to optimise the use of missing transverse momentum in diverse analyses throughout Runs 2 and 3 of the Large Hadron Collider and for future analyses.

7.
Int J Biol Macromol ; 257(Pt 2): 128510, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043663

RESUMEN

Comparison of chemical composition and functional properties of insoluble and soluble dietary fiber (IDF, SDF) obtained from four China cereal brans was investigated. With findings, IDFs and SDFs for rice bran (RB), wheat bran (WB), highland barely bran (HBB) and tartary buckwheat bran (TBB) contained several monosaccharides such as arabinose, galactose, glucose, xylose, and galacturonic acid. The RBIDF was shrinking and formed a rugged microscopic structure, while the structure of WBIDF was dense and flat. HBBIDF and TBBIDF showed fold and flake structure. The glucose adsorption capacity of the HBBIDF was highest among all samples, which was 3.2 mmol/g. TBBIDF exhibited the highest value of cholesterol adsorption capacity (10.5 mg/g) at pH 7.0 and maximum binding capacity (BCmax, 365.2 µmol/g) for cadmium at pH 7.0 among all samples, respectively. As a result, HBBIDF and TBBIDF are potential fiber-rich ingredients in functional foods.


Asunto(s)
Fibras de la Dieta , Grano Comestible , Fibras de la Dieta/metabolismo , Grano Comestible/química , Adsorción , Alimentos Funcionales , Glucosa
8.
Front Public Health ; 11: 1195961, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37601189

RESUMEN

Motivation: Augmented reality head-up display (AR-HUD) interface design takes on critical significance in enhancing driving safety and user experience among professional drivers. However, optimizing the above-mentioned interfaces poses challenges, innovative methods are urgently required to enhance performance and reduce cognitive load. Description: A novel method was proposed, combining the IVPM method with a GA to optimize AR-HUD interfaces. Leveraging machine learning, the IVPM-GA method was adopted to predict cognitive load and iteratively optimize the interface design. Results: Experimental results confirmed the superiority of IVPM-GA over the conventional BP-GA method. Optimized AR-HUD interfaces using IVPM-GA significantly enhanced the driving performance, and user experience was enhanced since 80% of participants rated the IVPM-GA interface as visually comfortable and less distracting. Conclusion: In this study, an innovative method was presented to optimize AR-HUD interfaces by integrating IVPM with a GA. IVPM-GA effectively reduced cognitive load, enhanced driving performance, and improved user experience for professional drivers. The above-described findings stress the significance of using machine learning and optimization techniques in AR-HUD interface design, with the aim of enhancing driver safety and occupational health. The study confirmed the practical implications of machine learning optimization algorithms for designing AR-HUD interfaces with reduced cognitive load and improved occupational safety and health (OSH) for professional drivers.


Asunto(s)
Realidad Aumentada , Salud Laboral , Humanos , Algoritmos , Aprendizaje Automático , Cognición
9.
Phytomedicine ; 119: 154953, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573809

RESUMEN

BACKGROUND: Glucocorticoids (GC)-induced osteoporosis (GIOP) is the most common cause of secondary osteoporosis, which leads to an increased risk of fracture in patients. The inhibition of the osteoblast effect is one of the main pathological characteristics of GIOP, but without effective drugs on treatment. PURPOSE: The aim of this study was to investigate the potential effects of orcinol glucoside (OG) on osteoblast cells and GIOP mice, as well as the mechanism of the underlying molecular target protein of OG both in vitro osteoblast cell and in vivo GIOP mice model. METHODS: GIOP mice were used to determine the effect of OG on bone density and bone formation. Then, a cellular thermal shift assay coupled with mass spectrometry (CETSA-MS) method was used to identify the target of OG. Surface plasmon resonance (SPR), enzyme activity assay, molecular docking, and molecular dynamics were used to detect the affinity, activity, and binding site between OG and its target, respectively. Finally, the anti-osteoporosis effect of OG through the target signal pathway was investigated in vitro osteoblast cell and in vivo GIOP mice model. RESULTS: OG treatment increased bone mineral density (BMD) in GIOP mice and effectively promoted osteoblast proliferation, osteogenic differentiation, and mineralization in vitro. The CETSA-MS result showed that the target of OG acting on the osteoblast is the p38 protein. SPR, molecular docking assay and enzyme activity assay showed that OG could direct bind to the p38 protein and is a p38 agonist. The cellular study found that OG could promote p38 phosphorylation and upregulate the proteins expression of its downstream osteogenic (Runx2, Osx, Collagen Ⅰ, Dlx5). Meanwhile, it could also inhibit the nuclear transport of GR by increasing the phosphorylation site at GR226 in osteoblast cell. In vivo GIOP mice experiment further confirmed that OG could prevent bone loss in the GIOP mice model through promoting p38 activity as well as its downstream proteins expression and activity. CONCLUSIONS: This study has established that OG could promote osteoblast activity and revise the bone loss in GIOP mice by direct binding to the p38 protein and is a p38 agonist to improve its downstream signaling, which has great potential in GIOP treatment for targeting p38. This is the first report to identify OG anti-osteoporosis targets using a label-free strategy (CETSA-MS).


Asunto(s)
Glucocorticoides , Osteoporosis , Animales , Ratones , Glucocorticoides/efectos adversos , Osteogénesis , Glucósidos/uso terapéutico , Simulación del Acoplamiento Molecular , Osteoporosis/inducido químicamente , Osteoporosis/tratamiento farmacológico , Osteoporosis/metabolismo
10.
Phys Rev Lett ; 130(9): 095101, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36930918

RESUMEN

We report on charge state measurements of laser-accelerated carbon ions in the energy range of several MeV penetrating a dense partially ionized plasma. The plasma was generated by irradiation of a foam target with laser-induced hohlraum radiation in the soft x-ray regime. We use the tricellulose acetate (C_{9}H_{16}O_{8}) foam of 2 mg/cm^{3} density and 1 mm interaction length as target material. This kind of plasma is advantageous for high-precision measurements, due to good uniformity and long lifetime compared to the ion pulse length and the interaction duration. We diagnose the plasma parameters to be T_{e}=17 eV and n_{e}=4×10^{20} cm^{-3}. We observe the average charge states passing through the plasma to be higher than those predicted by the commonly used semiempirical formula. Through solving the rate equations, we attribute the enhancement to the target density effects, which will increase the ionization rates on one hand and reduce the electron capture rates on the other hand. The underlying physics is actually the balancing of the lifetime of excited states versus the collisional frequency. In previous measurement with partially ionized plasma from gas discharge and z pinch to laser direct irradiation, no target density effects were ever demonstrated. For the first time, we are able to experimentally prove that target density effects start to play a significant role in plasma near the critical density of Nd-glass laser radiation. The finding is important for heavy ion beam driven high-energy-density physics and fast ignitions. The method provides a new approach to precisely address the beam-plasma interaction issues with high-intensity short-pulse lasers in dense plasma regimes.

11.
Dev Comp Immunol ; 139: 104576, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36240859

RESUMEN

Non-specific cytotoxic cells (NCCs) are essential to the cytotoxic cell-mediated immune response in teleost. The fish non-specific cytotoxic cell receptor protein 1 (NCCRP1) plays an important role as a membrane protein in the recognition of target cells and the activation of NCC. However, the roles of fish NCCs during pathogen infection require comprehensive studies. In this study, the coding sequence of northern snakehead (Channa argus) nccrp1 (Canccrp1) was cloned. Canccrp1 contains an open reading frame of 690 bp, encoding a peptide of 229 amino acids with a conserved F-box-associated domain (FBA) and proline-rich motifs (PRMs). Transcriptional expression analysis revealed that the constitutive expression of Canccrp1 was higher in the immune-related organs, such as liver, kidneys, and spleen. Moreover, mRNA and protein expression of Canccrp1 gradually increased in the spleen at 1-6 days post infection (dpi) with Nocardia seriolae, in addition to reaching peak expression in both the kidneys and liver at 2 dpi. A polyclonal antibody prepared against recombinant CaNCCRP1 effectively labeled NCCs in peripheral blood and different tissues. Then, immunofluorescence (IF) staining showed that the number of NCCs was significantly increased and showed a scattered distribution in the early stages of N. seriolae infection (2 and 4 dpi) before the forming of granulomas. At the late stages of N. seriolae infection (6 dpi), more NCCs migrated to preexisting granulomas, showing significant coaccumulation with N. seriolae. All these results clearly indicate the expression changes of CaNCCRP1, and the number and localization changes of NCCs post-N. seriolae infection, implying potential roles for fish NCCs in the antimicrobial infection process in fish.


Asunto(s)
Proliferación Celular , Animales
12.
Fish Shellfish Immunol ; 129: 207-220, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36058436

RESUMEN

Salinity is an important environmental factor that affects the yield and quality of large yellow croaker (Larimichthys crocea) during aquaculture. Here, whole-genome bisulfite sequencing (WGBS), RNA-seq, bisulfite sequencing PCR (BSP), quantitative real-time PCR (qPCR), and dual luciferase reporter gene detection technologies were used to analyze the DNA methylation characteristics and patterns of the liver genome, the expression and methylation levels of important immune genes in large yellow croaker in response to salinity stress. The results of WGBS showed that the cytosine methylation of CG type was dominant, CpGIsland and repeat regions were important regions where DNA methylation occurred, and the DNA methylation in upstream 2k (2000bp upstream of the promoter) and repeat regions had different changes in the liver tissue of large yellow croaker in the response to the 12‰, 24‰, 36‰ salinity stress of 4 w (weeks). In the combined analysis of WGBS and transcriptome, the complement and coagulation cascade pathways were significantly enriched, in which the complement-related genes C7, C3, C5, C4, C1R, MASP1, and CD59 were mainly changed in response to salinity stress. In the studied area of MASP1 gene promoter, the methylation levels of many CpG sites as well as total cytosine were strongly negatively correlated with mRNA expression level. Methylation function analysis of MASP1 promoter further proved that DNA methylation could inhibit the activity of MASP1 promoter, indicating that salinity may affect the expressions of complement-related genes by DNA methylation of gene promoter region.


Asunto(s)
Perciformes , Animales , Complemento C7/genética , Proteínas del Sistema Complemento/genética , Citosina/metabolismo , Metilación de ADN , Proteínas de Peces , Hígado/metabolismo , ARN Mensajero/metabolismo , Estrés Salino , Sulfitos
13.
Genomics ; 114(3): 110357, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35378240

RESUMEN

Northern snakehead (Channa argus) is an indigenous fish species and is one of popularly cultured snakeheads in China and other Asian countries. Unfortunately, Nocardia seriolae infections have caused considerable losses in the snakehead aquaculture industry. However, the infectivity and the immune response induced by N. seriolae in snakehead are unclear. In order to better understand the immune response of Northern snakehead in a series of time points after N. seriolae challenge, we conducted the transcriptomic comparison in snakehead spleen at 48, 96, and 144 h after the challenge of N. seriola against their control counterparts. Gene annotation and pathway analysis of differentially expressed genes (DEGs) were carried out to understand the functions of the DEGs. Additionally, protein-protein interaction networks were conducted to obtain the interaction relationships of immune-related DEGs. These results revealed the expression changes of multiple DEGs and signaling pathways involved in immunity during N. seriolae infection, which will facilitate our comprehensive understanding of the mechanisms involved in the immune response to bacterial infection in the northern snakehead.


Asunto(s)
Nocardiosis , Nocardia , Animales , Bazo , Nocardia/genética , Nocardiosis/genética , Nocardiosis/microbiología , Perfilación de la Expresión Génica
14.
Artículo en Inglés | MEDLINE | ID: mdl-35170486

RESUMEN

ABSTRACT: Diabetic nephropathy (DN) is the most common complication of diabetes mellitus. Although G protein subunit beta 4 (GNB4)-derived circular RNA (circ-GNB4; hsa_circ_0068087) is a promising candidate biomarker in diabetes mellitus, whether circ-GNB4 participates in DN occurrence and development remains unknown. Herein, we focused on DN-associated human renal mesangial cells (HRMCs) injury, and HRMCs were exposed in high glucose (HG) condition. Using quantitative polymerase chain reaction and western blotting, we found that circ-GNB4 and early growth response factor 1 (EGR1) were upregulated, whereas microRNA (miR)-23c was downregulated in DN patients' sera and HG-stimulated HRMCs. HG-induced injuries were measured by MTS method, western blotting, enzyme-linked immunosorbent assay and other special assay kits. Consequently, HG could inhibit superoxide dismutase activity, but induce cell proliferation and levels of malondialdehyde, Fibronectin, Collagen I, Collagen IV, interleukin-6, interleukin-1ß, and tumor necrosis factor-α. However, HG-induced these injuries were overall suppressed by silencing circ-GNB4 or overexpressing miR-23c. Moreover, miR-23c knockdown could counteract the effect of circ-GNB4 deficiency, and EGR1 restoration abrogated miR-23c overexpression role in HG-stimulated HRMCs. Notably, circ-GNB4 could target miR-23c and EGR1 was targeted by miR-23c, as confirmed by dual-luciferase reporter assay and RNA immunoprecipitation. Moreover, EGR1 expression was positively modulated by circ-GNB4 via miR-23c. Collectively, circ-GNB4 might be a novel mechanism of DN-induced HRMCs injury, and there was a circ-GNB4/miR-23c/EGR1 pathway underlying the proliferation, extracellular matrix accumulation, inflammation and oxidative stress. This study suggested circ-GNB4 as a potential target to interfere the development of DN.

15.
Drug Metab Dispos ; 49(9): 856-868, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34326139

RESUMEN

Infigratinib (INF) is a promising selective inhibitor of fibroblast growth factor receptors 1-3 that has recently been accorded both orphan drug designation and priority review status by the US Food and Drug Administration for the treatment of advanced cholangiocarcinoma. Its propensity to undergo bioactivation to electrophilic species was recently expounded upon. However, other than causing aberrant idiosyncratic toxicities, these reactive intermediates may elicit mechanism-based inactivation of cytochrome P450 enzymes. In this study, we investigated the interactions between INF and the most abundant hepatic CYP3A. Our findings revealed that, apart from being a potent noncompetitive reversible inhibitor of CYP3A4, INF inactivated CYP3A4 in a time-, concentration- and NADPH-dependent manner with inactivator concentration at half-maximum inactivation rate constant, maximum inactivation rate constant, and partition ratio of 4.17 µM, 0.068 minute-1, and 41, respectively, when rivaroxaban was employed as the probe substrate. Coincubation with testosterone (alternative CYP3A substrate) or ketoconazole (direct CYP3A inhibitor) attenuated the rate of inactivation, whereas the inclusion of glutathione and catalase did not confer such protection. The lack of enzyme activity recovery after dialysis for 4 hours and oxidation with potassium ferricyanide, coupled with the absence of the characteristic Soret peak signature collectively substantiated that inactivation of CYP3A4 by INF was not mediated by the formation of quasi-irreversible metabolite-intermediate complexes but rather through irreversible covalent adduction to the prosthetic heme and/or apoprotein. Finally, glutathione trapping and high-resolution mass spectrometry experimental results unraveled two plausible bioactivation mechanisms of INF arising from the generation of a p-benzoquinonediimine and epoxide reactive intermediate. SIGNIFICANCE STATEMENT: The potential of INF to cause MBI of CYP3A4 was unknown. This study reports the reversible noncompetitive inhibition and irreversible covalent MBI of CYP3A4 by INF and proposes two potential bioactivation pathways implicating p-benzoquinonediimine and epoxide reactive intermediates, following which a unique covalent docking methodology was harnessed to elucidate the structural and molecular determinants underscoring its inactivation. Findings from this study lay the groundwork for future investigation of clinically relevant drug-drug interactions between INF and concomitant substrates of CYP3A4.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacocinética , NADP/metabolismo , Compuestos de Fenilurea/farmacocinética , Pirimidinas/farmacocinética , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Antineoplásicos/farmacocinética , Colangiocarcinoma/tratamiento farmacológico , Interacciones Farmacológicas , Humanos , Inactivación Metabólica , Tasa de Depuración Metabólica , Redes y Vías Metabólicas
16.
Chem Res Toxicol ; 34(7): 1800-1813, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34189909

RESUMEN

Erdafitinib (ERD) is a first-in-class pan inhibitor of fibroblast growth factor receptor 1-4 that has garnered global regulatory approval for the treatment of advanced or metastatic urothelial carcinoma. Although it has been previously reported that ERD elicits time-dependent inhibition (TDI) of cytochrome P450 (P450) 3A4 (CYP3A4), the exact biochemical nature underpinning this observation remains obfuscated. Moreover, it is also uninterrogated if CYP3A5-its highly homologous counterpart-could be susceptible to such interactions. Mechanism-based inactivation (MBI) of P450 is a unique subset of TDI that hinges on prior bioactivation of the drug to a reactive intermediate and possesses profound clinical and toxicological implications due to its irreversible nature. Here, we investigated and confirmed that ERD inactivated both CYP3A isoforms in a time-, concentration-, and NADPH-dependent manner with KI, kinact, and partition ratio of 4.01 and 10.04 µM, 0.120 and 0.045 min-1, and 32 and 55 for both CYP3A4 and CYP3A5, respectively, when rivaroxaban was employed as the probe substrate. Co-incubation with an alternative substrate or direct inhibitor of CYP3A attenuated the rate of inactivation, whereas the addition of glutathione or catalase did not induce such protection. The lack of enzyme activity recovery following dialysis for 4 h and oxidation with potassium ferricyanide combined with the lack of a Soret peak in spectral scans collectively substantiated that ERD is an irreversible covalent MBI of CYP3A. Finally, glutathione trapping and high-resolution mass spectrometry experiments illuminated a plausible bioactivation mechanism of ERD by CYP3A arising from metabolic epoxidation of its quinoxaline ring.


Asunto(s)
Inhibidores del Citocromo P-450 CYP3A/farmacología , Pirazoles/farmacología , Quinoxalinas/farmacología , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Citocromo P-450 CYP3A/metabolismo , Inhibidores del Citocromo P-450 CYP3A/química , Humanos , NADP/metabolismo , Pirazoles/química , Quinoxalinas/química
17.
Ecotoxicol Environ Saf ; 217: 112255, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33915448

RESUMEN

The aromatase inhibitor letrozole can be found in rivers, effluents, and even drinking water. Studies have demonstrated that letrozole affects various metabolic pathways and may cause reproductive toxicity, especially in fish exposed during development. However, studies on the effect of a low concentration of letrozole at the whole-gonad transcriptomic level in the early stage of fish sexual development have not been investigated. The aim of our study was to explore the potential effects of a low concentration of letrozole on the gonad transcriptome of Nile tilapia at an early stage of sexual development. In this study, 9 dpf (days postfertilization) Nile tilapia were exposed to trace letrozole for 12 days. Letrozole exposure from 9 dpf to 21 dpf persistently altered phenotypic sex development and induced the male-biased sex ratio. The transcriptome results showed that 1173 differentially expressed genes (DEGs) were present in the female control vs 1.5 µg/L letrozole-treated female comparison group and that 1576 DEGs were present in the 1.5 µg/L letrozole-treated female vs male control comparison group. Differentially expressed gene enrichment analysis revealed several crucial pathways, including the drug metabolism-cytochrome P450 pathway, the ErbB-PI3K/Akt/mTOR pathway, and the calcium signalling pathway. Further analysis of these identified DEGs indicated that some key genes correlated with metabolism and epigenetic regulation were significantly affected by letrozole, such as UDP-glucuronosyltransferase (Ugt), glutathione S-transferase omega-1 (Gsto1), lysine-specific demethylase 6bb (Kdm6bb, original name is Kdm6a), jumonji and AT-rich interaction domain containing 2 (Jarid2b, original name is Jarid2), growth arrest and DNA damage inducible gamma (Gadd45g), and chromobox protein 7 (Cbx7). The qRT-PCR validation results for twelve DEGs showed that the Pearson's correlation of the log10fold change values between the qPCR and RNA-Seq results was 0.90, indicating the accuracy and reliability of the RNA-Seq results. Our study is the first to report the effect of letrozole on the transcriptome of gonads from fish during early-stage sexual development. These findings will be useful for understanding the toxic effects and molecular mechanisms of letrozole exposure at the early stage of gonad development on the sexual development of aquatic organisms.


Asunto(s)
Antineoplásicos/toxicidad , Cíclidos/fisiología , Letrozol/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Cíclidos/genética , Cíclidos/metabolismo , Biología Computacional , Epigénesis Genética , Femenino , Gónadas/efectos de los fármacos , Masculino , Fosfatidilinositol 3-Quinasas/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , Diferenciación Sexual/efectos de los fármacos , Razón de Masculinidad , Transcriptoma
18.
Environ Sci Pollut Res Int ; 28(5): 5271-5282, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32960445

RESUMEN

This study utilized the Pooled Mean Group estimator to investigate the effect of renewable energy consumption, electricity consumption, economic growth, institutional quality, and globalization on carbon dioxide emission with an updated dataset for 10 economies for the time period from 1985 to 2018. Results of Harris-Tzavalis's test and Levin-Lin-Chu's test show that the utilized regressand and regressors are stationary at I(0) and I(I) that conform that the pooled mean group estimator panel ARDL can be utilized. Results of Kao and Pedroni cointegration tests show that cointegration exists amongst the variables. Empirical results of pooled mean group (PMG) revealed that renewable energy consumption helps to diminish the environmental degradation while foreign direct investment, electricity consumption, and economic growth and institutional quality positively affect the degradation of the environment. The findings show that globalization in the long run adversely and significantly influences the environmental degradation; globalization reduces the environmental degradation in the long run while in the short run, globalization positively and significantly influences the environmental degradation. Results of the panel VAR and VECM model indicate electricity consumption and institutional quality, and globalization positively affects environmental degradation. Further policies are recommended based on the findings.


Asunto(s)
Dióxido de Carbono , Desarrollo Económico , Internacionalidad , Inversiones en Salud , Energía Renovable
19.
Diabetol Metab Syndr ; 12(1): 109, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-33298110

RESUMEN

BACKGROUND: Long non-coding RNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) has been reported to be related to diabetic nephropathy (DN) progression. However, the regulatory mechanisms of CDKN2B-AS1 in DN are unclear. METHODS: High glucose (HG) was used to induce human mesangial cells (HMCs) for establishing the DN model. Expression levels of CDKN2B-AS1, microRNA (miR)-15b-5p, wingless-Type family member 2B (WNT2B) mRNA in serum and HMCs were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The viability and cell cycle progression of HMCs were determined with Cell Counting Kit-8 (CCK-8) or flow cytometry assays. The levels of several proteins and inflammatory factors in HMCs were analyzed by western blotting or enzyme-linked immunosorbent assay (ELISA). The relationship between CDKN2B-AS1 or WNT2B and miR-15b-5p was verified with dual-luciferase reporter assay. RESULTS: CDKN2B-AS1 and WNT2B were upregulated while miR-15b-5p was downregulated in serum of DN patients and HG-treated HMCs. CDKN2B-AS1 inhibition reduced HG-induced viability, cell cycle progression, ECM accumulation, and inflammation response in HMCs. CDKN2B-AS1 regulated WNT2B expression via competitively binding to miR-15b-5p. MiR-15b-5p inhibitor reversed CDKN2B-AS1 knockdown-mediated influence on viability, cell cycle progression, ECM accumulation, and inflammation response of HG-treated HMCs. The repressive effect of miR-15b-5p mimic on viability, cell cycle progression, ECM accumulation, and inflammation response of HG-treated HMCs was abolished by WNT2B overexpression. CONCLUSION: CDKN2B-AS1 regulated HG-induced HMC viability, cell cycle progression, ECM accumulation, and inflammation response via regulating the miR-15b-5p/WNT2B axis, provided a new mechanism for understanding the development of DN.

20.
Neurooncol Adv ; 2(1): vdaa106, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33134921

RESUMEN

BACKGROUND: Pediatric high-grade gliomas (pHGGs) are aggressive primary brain tumors with local invasive growth and poor clinical prognosis. Treatment of pHGGs is particularly challenging given the intrinsic resistance to chemotherapy, an absence of novel therapeutics, and the difficulty of drugs to reach the tumor beds. Accumulating evidence suggests that production of reactive oxygen species (ROS) and misfolded proteins, which typically leads to endoplasmic reticulum (ER) stress, is an essential mechanism in cancer cell survival. METHODS: Several cell viability assays were used in 6 patient-derived pHGG cultures to evaluate the effect of the natural compound obtusaquinone (OBT) on cytotoxicity. Orthotopic mouse models were used to determine OBT effects in vivo. Immunoblotting, immunostaining, flow cytometry, and biochemical assays were used to investigate the OBT mechanism of action. RESULTS: OBT significantly inhibited cell survival of patient-derived pHGG cells in culture. OBT inhibited tumor growth and extended survival in 2 different orthotopic xenograft models. Mechanistically, OBT induced ER stress through abnormal ROS accumulation. CONCLUSION: Our data demonstrate the utility and feasibility of OBT as a potential therapeutic option for improving the clinical treatment of pHGGs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...