Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mater Sci Mater Med ; 35(1): 2, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38206428

RESUMEN

Microfluidics has emerged as a promising approach for assessing cellular behavior in vitro, providing more physiologically relevant cell culture environments with dynamic flow and shear stresses. This study introduces the Universal Biomaterial-on-Chip (UBoC) device, which enables the evaluation of cell response on diverse biomaterial substrates in a 3D-printed microfluidic device. The UBoC platform offers mechanical stimulation of the cells and monitoring of their response on diverse biomaterials, enabling qualitative and quantitative in vitro analysis both on- and off-chip. Cell adhesion and proliferation were assessed to evaluate the biocompatibility of materials with different physical properties, while mechanical stimulation was performed to investigate shear-dependent calcium signaling in pre-osteoblasts. Moreover, the applicability of the UBoC platform in creating more complex in vitro models by culturing multiple cell types was demonstrated, establishing a dynamic multicellular environment to investigate cellular interfaces and their significance in biological processes. Overall, the UBoC presents an adaptable tool for in vitro evaluation of cellular behavior, offering opportunities for studying various biomaterials and cell interactions in microfluidic environments.


Asunto(s)
Materiales Biocompatibles , Comunicación Celular , Adhesión Celular , Técnicas de Cultivo de Célula , Dispositivos Laboratorio en un Chip
2.
Microsyst Nanoeng ; 10: 18, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38268774

RESUMEN

In healthy individuals, the intestinal epithelium forms a tight barrier to prevent gut bacteria from reaching blood circulation. To study the effect of probiotics, dietary compounds and drugs on gut barrier formation and disruption, human gut epithelial and bacterial cells can be cocultured in an in vitro model called the human microbial crosstalk (HuMiX) gut-on-a-chip system. Here, we present the design, fabrication and integration of thin-film electrodes into the HuMiX platform to measure transepithelial electrical resistance (TEER) as a direct readout on barrier tightness in real-time. As various aspects of the HuMiX platform have already been set in their design, such as multiple compressible layers, uneven surfaces and nontransparent materials, a novel fabrication method was developed whereby thin-film metal electrodes were first deposited on flexible substrates and sequentially integrated with the HuMiX system via a transfer-tape approach. Moreover, to measure localized TEER along the cell culture chamber, we integrated multiple electrodes that were connected to an impedance analyzer via a multiplexer. We further developed a dynamic normalization method because the active measurement area depends on the measured TEER levels. The fabrication process and system setup can be applicable to other barrier-on-chip systems. As a proof-of-concept, we measured the barrier formation of a cancerous Caco-2 cell line in real-time, which was mapped at four spatially separated positions along the HuMiX culture area.

3.
Sci Rep ; 13(1): 12829, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550357

RESUMEN

Hydrogels are used extensively as cell-culture scaffolds for both 2D and 3D cell cultures due to their biocompatibility and the ease in which their mechanical and biological properties can be tailored to mimic natural tissue. The challenge when working with hydrogel-based scaffolds is in their handling, as hydrogels that mimic e.g. brain tissue, are both fragile and brittle when prepared as thin (sub-mm) membranes. Here, we describe a method for facile handling of thin hydrogel cell culture scaffolds by molding them onto a polycaprolactone (PCL) mesh support attached to a commonly used Transwell set-up in which the original membrane has been removed. In addition to demonstrating the assembly of this set-up, we also show some applications for this type of biological membrane. A polyethylene glycol (PEG)-gelatin hydrogel supports cell adhesion, and the structures can be used for biological barrier models comprising either one or multiple hydrogel layers. Here, we demonstrate the formation of a tight layer of an epithelial cell model comprising MDCK cells cultured over 9 days by following the build-up of the transepithelial electrical resistances. Second, by integrating a pure PEG hydrogel into the PCL mesh, significant swelling is induced, which leads to the formation of a non-adherent biological scaffold with a large curvature that is useful for spheroid formation. In conclusion, we demonstrate the development of a handling platform for hydrogel cell culture scaffolds for easy integration with conventional measurement techniques and miniaturized organs-on-chip systems.


Asunto(s)
Materiales Biocompatibles , Hidrogeles , Hidrogeles/química , Materiales Biocompatibles/química , Técnicas de Cultivo de Célula , Técnicas de Cultivo Tridimensional de Células , Tecnología , Andamios del Tejido/química , Ingeniería de Tejidos/métodos
4.
RSC Adv ; 12(46): 30135-30144, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36329947

RESUMEN

Left-right asymmetry is a conserved property in nature and observed in the human body, a property known as cell chirality. Cell chirality is often studied using micropatterned in vitro models. However, micropattern geometry and size often varies across different studies, making it challenging to compare results. Here, we utilized micropatterned RGD-peptide lines on hyaluronic acid hydrogels to investigate the effect of the micropattern width on the exhibited cell chirality bias of brain microvascular endothelial cells. Overall, this cell type exhibited a negative chirality bias on micropatterned lines ranging from 10 µm to 400 µm in width, where the negative bias was most pronounced on the 100 µm wide lines. We also observed that this exhibited chirality bias varied across the line width. This work serves as a guide to determine optimal micropattern width for further investigations on cell chirality bias and its prominence in e.g., disease states or upon exposure to toxic substances.

5.
Mater Today Bio ; 16: 100351, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35865408

RESUMEN

The in vitro biological characterization of biomaterials is largely based on static cell cultures. However, for highly reactive biomaterials such as calcium-deficient hydroxyapatite (CDHA), this static environment has limitations. Drastic alterations in the ionic composition of the cell culture medium can negatively affect cell behavior, which can lead to misleading results or data that is difficult to interpret. This challenge could be addressed by a microfluidics-based approach (i.e. on-chip), which offers the opportunity to provide a continuous flow of cell culture medium and a potentially more physiologically relevant microenvironment. The aim of this work was to explore microfluidic technology for its potential to characterize CDHA, particularly in the context of inflammation. Two different CDHA substrates (chemically identical, but varying in microstructure) were integrated on-chip and subsequently evaluated. We demonstrated that the on-chip environment can avoid drastic ionic alterations and increase protein sorption, which was reflected in cell studies with RAW 264.7 macrophages. The cells grown on-chip showed a high cell viability and enhanced proliferation compared to cells maintained under static conditions. Whereas no clear differences in the secretion of tumor necrosis factor alpha (TNF-α) were found, variations in cell morphology suggested a more anti-inflammatory environment on-chip. In the second part of this study, the CDHA substrates were loaded with the drug Trolox. We showed that it is possible to characterize drug release on-chip and moreover demonstrated that Trolox affects the TNF-α secretion and morphology of RAW 264.7 â€‹cells. Overall, these results highlight the potential of microfluidics to evaluate (bioactive) biomaterials, both in pristine form and when drug-loaded. This is of particular interest for the latter case, as it allows the biological characterization and assessment of drug release to take place under the same dynamic in vitro environment.

6.
Int J Pharm ; 621: 121785, 2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35500690

RESUMEN

Subcutaneous injection is one of the most common approaches for administering biopharmaceuticals unsuitable for oral delivery. However, there is a lack of methods to predict the behavior of biopharmaceuticals within the extracellular matrix of the subcutaneous tissue. In this work, we present a novel miniaturized microfluidic-based in vitro method able to investigate interactions between drug molecules and the polymers of the subcutaneous extracellular matrix. To validate the method, microgels consisting of, respectively, covalently cross-linked hyaluronic acid, polyacrylic acid, and commercially available DC Bead™, were exposed to three model substances: cytochrome C, protamine sulfate and amitriptyline hydrochloride. These components were chosen to include systems with widely different physiochemical properties (charge, size, self-assembly, etc.) The experimental results were compared with theoretical predictions from a gel model developed earlier. The results show that the method is suitable as a rapid screening method for automated, large-scale, probing of interactions between biopolymers and drug molecules, with small consumption of material.


Asunto(s)
Productos Biológicos , Microgeles , Microfluídica , Péptidos , Polielectrolitos
7.
ISME J ; 16(8): 2060-2064, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35474114

RESUMEN

Photosynthetic dinoflagellates in the family Symbiodiniaceae engage in symbiosis with scleractinian corals. As coral 'bleaching' is partly governed by the thermal sensitivity of different Symbiodiniaceae lineages, numerous studies have investigated their temperature sensitivity. However, the systematic identification of single-cells with increased temperature resistance among these dinoflagellates has remained inaccessible, mostly due to a lack of technologies operating at the microscale. Here, we employed a unique combination of microfluidics, miniaturized temperature control, and chlorophyll fluorometry to characterize the single-cell heterogeneity among five representative species within the Symbiodiniaceae family under temperature stress. We monitored single-cell maximum quantum yields (Fv/Fm) of photosystem (PS) II under increasing temperature stress (22‒39 °C, + 1 °C every 15 min), and detected a significant Fv/Fm reduction at lineage-specific temperatures ranging from 28 °C to 34 °C alongside a 40- to 180- fold increase in intraspecific heterogeneity under elevated temperatures (>31 °C). We discovered that the initial Fv/Fm of a cell could predict the same cell's ability to perform PSII photochemistry under moderate temperature stress (<32 °C), suggesting its use as a proxy for measuring the thermal sensitivity among Symbiodiniaceae. In combination, our study highlights the heterogeneous thermal sensitivity among photosynthetic Symbiodiniaceae and adds critical resolution to our understanding of temperature-induced coral bleaching.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/fisiología , Arrecifes de Coral , Dinoflagelados/fisiología , Calor , Complejo de Proteína del Fotosistema II , Simbiosis , Temperatura
8.
ACS Omega ; 7(1): 908-920, 2022 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-35036755

RESUMEN

Biomaterial development is a long process consisting of multiple stages of design and evaluation within the context of both in vitro and in vivo testing. To streamline this process, mathematical and computational modeling displays potential as a tool for rapid biomaterial characterization, enabling the prediction of optimal physicochemical parameters. In this work, a Langmuir isotherm-based model was used to describe protein and cell adhesion on a biomimetic hydroxyapatite surface, both independently and in a one-way coupled system. The results indicated that increased protein surface coverage leads to improved cell adhesion and spread, with maximal protein coverage occurring within 48 h. In addition, the Langmuir model displayed a good fit with the experimental data. Overall, computational modeling is an exciting avenue that may lead to savings in terms of time and cost during the biomaterial development process.

9.
Sci Data ; 9(1): 26, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087120

RESUMEN

Confocal microscopy offers a mean to extract quantitative data on spatially confined subcellular structures. Here, we provide an imaging dataset of confocal z-stacks on endothelial cells spatially confined on lines with different widths, visualizing the nucleus, F-actin, and zonula occludens-1 (ZO-1), as well as the lines. This dataset also includes confocal images of spatially confined endothelial cells challenged with different glucose conditions. We have validated the image quality by established analytical means using the MeasureImageQuality module of the CellProfilerTM software. We envision that this dataset could be used to extract data on both a population and a single cell level, as well as a learning set for the development of new image analysis tools.


Asunto(s)
Células Endoteliales , Glucosa , Animales , Humanos , Procesamiento de Imagen Asistido por Computador , Microscopía Confocal , Programas Informáticos
10.
Sci Rep ; 11(1): 19608, 2021 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608232

RESUMEN

This work reports on an effort to decipher the alignment of brain microvasculature endothelial cells to physical constrains generated via adhesion control on hydrogel surfaces and explore the corresponding responses upon glucose level variations emulating the hypo- and hyperglycaemic effects in diabetes. We prepared hydrogels of hyaluronic acid a natural biomaterial that does not naturally support endothelial cell adhesion, and specifically functionalised RGD peptides into lines using UV-mediated linkage. The width of the lines was varied from 10 to 100 µm. We evaluated cell alignment by measuring the nuclei, cell, and F-actin orientations, and the nuclei and cell eccentricity via immunofluorescent staining and image analysis. We found that the brain microvascular endothelial cells aligned and elongated to these physical constraints for all line widths. In addition, we also observed that varying the cell medium glucose levels affected the cell alignment along the patterns. We believe our results may provide a platform for further studies on the impact of altered glucose levels in cardiovascular disease.


Asunto(s)
Encéfalo/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , Glucosa/metabolismo , Hidrogeles , Actinas/metabolismo , Materiales Biocompatibles , Adhesión Celular , Técnicas de Cultivo de Célula , Forma de la Célula , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Glucosa/farmacología , Ácido Hialurónico/química , Hidrogeles/química , Ingeniería de Tejidos
12.
ACS Biomater Sci Eng ; 7(7): 2926-2948, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34133114

RESUMEN

Organ-on-chip systems are promising new in vitro research tools in medical, pharmaceutical, and biological research. Their main benefit, compared to standard cell culture platforms, lies in the improved in vivo resemblance of the cell culture environment. A critical aspect of these systems is the ability to monitor both the cell culture conditions and biological responses of the cultured cells, such as proliferation and differentiation rates, release of signaling molecules, and metabolic activity. Today, this is mostly done using microscopy techniques and off-chip analytical techniques and assays. Integrating in situ analysis methods on-chip enables improved time resolution, continuous measurements, and a faster read-out; hence, more information can be obtained from the developed organ and disease models. Integrated electrical, electrochemical, and optical sensors have been developed and used for chemical analysis in lab-on-a-chip systems for many years, and recently some of these sensing principles have started to find use in organ-on-chip systems as well. This perspective review describes the basic sensing principles, sensor fabrication, and sensor integration in organ-on-chip systems. The review also presents the current state of the art of integrated sensors and discusses future potential. We bring a technological perspective, with the aim of introducing in-line sensing and its promise to advance organ-on-chip systems and the challenges that lie in the integration to researchers without expertise in sensor technology.


Asunto(s)
Técnicas Biosensibles , Técnicas de Cultivo de Célula , Células Cultivadas , Monitoreo Fisiológico , Análisis de Secuencia por Matrices de Oligonucleótidos
13.
Lab Chip ; 21(9): 1694-1705, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949404

RESUMEN

This work describes a programmable heat-stage compatible with in situ microscopy for the accurate provision of spatiotemporally defined temperatures to different microfluidic devices. The heat-stage comprises an array of integrated thin-film Joule heaters and resistance temperature detectors (RTDs). External programming of the heat-stage is provided by a custom software program connected to temperature controllers and heater-sensor pairs. Biologically relevant (20-40 °C) temperature profiles can be supplied to cells within microfluidic devices as spatial gradients (0.5-1.5 °C mm-1) or in a time-varying approach via e.g. step-wise or sinusoidally varying profiles with negligible temperature over-shoot. Demonstration of the device is achieved by exposing two strains of the coral symbiont Symbiodinium to different temperature profiles while monitoring their single-cell photophysiology via chlorophyll fluorometry. This revealed that photophysiological responses to temperature depended on the exposure duration, exposure magnitude and strain background. Moreover, thermal dose analysis suggested that cell acclimatisation occurs under longer temperature (6 h) exposures but not under shorter temperature exposures (15 min). As the thermal sensitivity of Symbiodinium mediates the thermal tolerance in corals, our versatile technology now provides unique possibilities to research this interdependency at single cell resolution. Our results also show the potential of this heat-stage for further applications in fields such as biotechnology and ecotoxicology.


Asunto(s)
Microalgas , Calor , Microscopía , Fenotipo , Simbiosis , Temperatura
14.
Biomicrofluidics ; 15(3): 034103, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34025895

RESUMEN

Droplet microfluidics is a powerful method used to characterize chemical reactions at high throughput. Often detection is performed via in-line optical readout, which puts high demands on the detection system or makes detection of low concentration substrates challenging. Here, we have developed a droplet acoustofluidic chip for time-controlled reactions that can be combined with off-line optical readout. The principle of the platform is demonstrated by the enzymatic conversion of fluorescein diphosphate to fluorescein by alkaline phosphatase. The novelty of this work is that the time of the enzymatic reaction is controlled by physically removing the enzymes from the droplets instead of using chemical inhibitors. This is advantageous as inhibitors could potentially interact with the readout. Droplets containing substrate were generated on the chip, and enzyme-coupled microbeads were added into the droplets via pico-injection. The reaction starts as soon as the enzyme/bead complexes are added, and the reaction is stopped when the microbeads are removed from the droplets at a channel bifurcation. The encapsulated microbeads were focused in the droplets by acoustophoresis during the split, leaving the product in the side daughter droplet to be collected for the analysis (without beads). The time of the reaction was controlled by using different outlets, positioned at different lengths from the pico-injector. The enzymatic conversion could be measured with fluorescence readout in a separate PDMS based assay chip. We show the ability to perform time-controlled enzymatic assays in droplet microfluidics coupled to an off-line optical readout, without the need of enzyme inhibitors.

15.
Sci Rep ; 11(1): 7479, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33820916

RESUMEN

The generation of hydrogel droplets using droplet microfluidics has emerged as a powerful tool with many applications in biology and medicine. Here, a microfluidic system to control the position of particles (beads or astrocyte cells) in hydrogel droplets using bulk acoustic standing waves is presented. The chip consisted of a droplet generator and a 380 µm wide acoustic focusing channel. Droplets comprising hydrogel precursor solution (polyethylene glycol tetraacrylate or a combination of polyethylene glycol tetraacrylate and gelatine methacrylate), photoinitiator and particles were generated. The droplets passed along the acoustic focusing channel where a half wavelength acoustic standing wave field was generated, and the particles were focused to the centre line of the droplets (i.e. the pressure nodal line) by the acoustic force. The droplets were cross-linked by exposure to UV-light, freezing the particles in their positions. With the acoustics applied, 89 ± 19% of the particles (polystyrene beads, 10 µm diameter) were positioned in an area ± 10% from the centre line. As proof-of-principle for biological particles, astrocytes were focused in hydrogel droplets using the same principle. The viability of the astrocytes after 7 days in culture was 72 ± 22% when exposed to the acoustic focusing compared with 70 ± 19% for samples not exposed to the acoustic focusing. This technology provides a platform to control the spatial position of bioparticles in hydrogel droplets, and opens up for the generation of more complex biological hydrogel structures.

16.
Acta Biomater ; 127: 327-337, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33785452

RESUMEN

The reliability of conventional cell culture studies to evaluate biomaterials is often questioned, as in vitro outcomes may contradict results obtained through in vivo assays. Microfluidics technology has the potential to reproduce complex physiological conditions by allowing for fine control of microscale features such as cell confinement and flow rate. Having a continuous flow during cell culture is especially advantageous for bioactive biomaterials such as calcium-deficient hydroxyapatite (HA), which may otherwise alter medium composition and jeopardize cell viability, potentially producing false negative results in vitro. In this work, HA was integrated into a microfluidics-based platform (HA-on-chip) and the effect of varied flow rates (2, 8 and 14 µl/min, corresponding to 0.002, 0.008 and 0.014 dyn/cm2, respectively) was evaluated. A HA sample placed in a well plate (HA-static) was included as a control. While substantial calcium depletion and phosphate release occurred in static conditions, the concentration of ions in HA-on-chip samples remained similar to those of fresh medium, particularly at higher flow rates. Pre-osteoblast-like cells (MC3T3-E1) exhibited a significantly higher degree of proliferation on HA-on-chip (8 µl/min flow rate) as compared to HA-static. However, cell differentiation, analysed by alkaline phosphatase (ALP) activity, showed low values in both conditions. This study indicates that cells respond differently when cultured on HA under flow compared to static conditions, which indicates the need for more physiologically relevant methods to increase the predictive value of in vitro studies used to evaluate biomaterials. STATEMENT OF SIGNIFICANCE: There is a lack of correlation between the results obtained when testing some biomaterials under cell culture as opposed to animal models. To address this issue, a cell culture method with slightly enhanced physiological relevance was developed by incorporating a biomaterial, known to regenerate bone, inside of a microfluidic platform that enabled a continuous supply of cell culture medium. Since the utilized biomaterial interacts with surrounding ions, the perfusion of medium allowed for shielding of these changes similarly as would happen in the body. The experimental outcomes observed in the dynamic platform were different than those obtained with standard static cell culture systems, proving the key role of the platform in the assessment of biomaterials.


Asunto(s)
Durapatita , Microfluídica , Células 3T3 , Fosfatasa Alcalina , Animales , Biomimética , Diferenciación Celular , Proliferación Celular , Ratones , Osteoblastos , Reproducibilidad de los Resultados
17.
Cardiovasc Res ; 117(14): 2742-2754, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-33729461

RESUMEN

The development of organs-on-chip (OoC) has revolutionized in vitro cell-culture experiments by allowing a better mimicry of human physiology and pathophysiology that has consequently led researchers to gain more meaningful insights into disease mechanisms. Several models of hearts-on-chips and vessels-on-chips have been demonstrated to recapitulate fundamental aspects of the human cardiovascular system in the recent past. These 2D and 3D systems include synchronized beating cardiomyocytes in hearts-on-chips and vessels-on-chips with layer-based structures and the inclusion of physiological and pathological shear stress conditions. The opportunities to discover novel targets and to perform drug testing with chip-based platforms have substantially enhanced, thanks to the utilization of patient-derived cells and precise control of their microenvironment. These organ models will provide an important asset for future approaches to personalized cardiovascular medicine and improved patient care. However, certain technical and biological challenges remain, making the global utilization of OoCs to tackle unanswered questions in cardiovascular science still rather challenging. This review article aims to introduce and summarize published work on hearts- and vessels-on chips but also to provide an outlook and perspective on how these advanced in vitro systems can be used to tailor disease models with patient-specific characteristics.


Asunto(s)
Cardiopatías , Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas/instrumentación , Miocitos Cardíacos , Animales , Fármacos Cardiovasculares/uso terapéutico , Técnicas de Cultivo de Célula , Células Cultivadas , Toma de Decisiones Clínicas , Desarrollo de Medicamentos , Descubrimiento de Drogas , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Cardiopatías/patología , Cardiopatías/fisiopatología , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Medicina de Precisión
18.
Cell Mol Bioeng ; 14(1): 121-130, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33633814

RESUMEN

INTRODUCTION: Human mesenchymal stem cells (hMSCs) have a great clinical potential for tissue regeneration purposes due to its multilineage capability. Previous studies have reported that a single addition of 5-azacytidine (5-AzaC) causes the differentiation of hMSCs towards a myocardial lineage. The aim of this work was to evaluate the effect of 5-AzaC addition frequency on hMSCs priming (i.e., indicating an early genetic differentiation) using two culture environments. METHODS: hMSCs were supplemented with 5-AzaC while cultured in well plates and in microfluidic chips. The impact of 5-AzaC concentration (10 and 20 µM) and addition frequency (once, daily or continuously), as well as of culture period (2 or 5 days) on the genetic upregulation of PPARγ (adipocytes), PAX3 (myoblasts), SOX9 (chondrocytes) and RUNX2 (osteoblasts) was evaluated. RESULTS: Daily delivering 5-AzaC caused a higher upregulation of PPARγ, SOX9 and RUNX2 in comparison to a single dose delivery, both under static well plates and dynamic microfluidic cultures. A particularly high gene expression of PPARγ (tenfold-change) could indicate priming of hMSCs towards adipocytes. CONCLUSIONS: Both macro- and microscale cultures provided results with similar trends, where addition frequency of 5-AzaC was a crucial factor to upregulate several genes. Microfluidics technology was proven to be a suitable platform for the continuous delivery of a drug and could be used for screening purposes in tissue engineering research.

19.
HardwareX ; 10: e00245, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35607686

RESUMEN

Microfluidic devices are widely used for biomedical applications but there is still a lack of affordable, reliable and user-friendly systems for transferring microfluidic chips from an incubator to a microscope while maintaining physiological conditions when performing microscopy. The presented carrier represents a cost-effective option for sustaining environmental conditions of microfluidic chips in combination with minimizing the device manipulation required for reagent injection, media exchange or sample collection. The carrier, which has the outer dimension of a standard well plate size, contains an integrated perfusion system that can recirculate the media using piezo pumps, operated in either continuous or intermittent modes (50-1000 µl/min). Furthermore, a film resistive heater made from 37 µm-thick copper wires, including temperature feedback control, was used to maintain the microfluidic chip temperature at 37 °C when outside the incubator. The heater characterisation showed a uniform temperature distribution along the chip channel for perfusion flow rates up to 10 µl/min. To demonstrate the feasibility of our platform for long term cell culture monitoring, mouse brain endothelial cells (bEnd.3) were repeatedly monitored for a period of 10 days, demonstrating a system with both the versatility and the potential for long imaging in microphysiological system cell cultures.

20.
RSC Adv ; 11(47): 29859-29869, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35479529

RESUMEN

Some of the most fundamental chemical building blocks of life on Earth are the metal elements. X-ray absorption spectroscopy (XAS) is an element-specific technique that can analyse the local atomic and electronic structure of, for example, the active sites in catalysts and energy materials and allow the metal sites in biological samples to be identified and understood. A microfluidic device capable of withstanding the intense hard X-ray beams of a 4th generation synchrotron and harsh chemical sample conditions is presented in this work. The device is evaluated at the K-edges of iron and bromine and the L 3-edge of lead, in both transmission and fluorescence mode detection and in a wide range of sample concentrations, as low as 0.001 M. The device is fabricated in silicon and glass with plasma etched microchannels defined in the silicon wafer before anodic bonding of the glass wafer into a complete device. The device is supported with a well-designed printed chip holder that made the microfluidic device portable and easy to handle. The chip holder plays a pivotal role in mounting the delicate microfluidic device on the beamline stage. Testing validated that the device was sufficiently robust to contain and flow through harsh acids and toxic samples. There was also no significant radiation damage to the device observed, despite focusing with intense X-ray beams for multiple hours. The quality of X-ray spectra collected is comparable to that from standard methods; hence we present a robust microfluidic device to analyse liquid samples using synchrotron XAS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...