Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Int J Mass Spectrom ; 301(1-3): 12-21, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21499536

RESUMEN

CD34, a type I transmembrane glycoprotein, is a surface antigen which is expressed on several cell types, including hematopoietic progenitors, endothelial cells, as well as mast cells. Recently, CD34 has been described as a marker for epidermal stem cells in mouse hair follicles, and is expressed in outer root sheath cells of the human hair follicle. Although the biological function and regulation of CD34 is not well understood, it is thought to be involved in cell adhesion as well as possibly having a role in signal transduction. In addition, CD34 was shown to be critical for skin tumor development in mice, although the exact mechanism remains unknown.Many proteins' functions and biological activities are regulated through post-translational modifications. The extracellular domain of CD34 is heavily glycosylated but the role of these glycans in CD34 function is unknown. Additionally, two sites of tyrosine phosphorylation have been reported on human CD34 and it is known that CD34 is phosphorylated, at least in part, by protein kinase C; however, the precise location of the sites of phosphorylation has not been reported. In an effort to identify specific phosphorylation sites in CD34 and delineate the possible role of protein kinase C, we undertook the identification of the in vitro sites of phosphorylation on the intracellular domain of mouse CD34 (aa 309-382) following PKC treatment. For this work, we are using a combination of enzymatic proteolysis and peptide sequencing by mass spectrometry. After which the in vivo sites of phosphorylation of full-length mouse CD34 expressed from HEK293F cells were determined. The observed in vivo sites of phosphorylation, however, are not consensus PKC sites, but our data indicate that one of these sites may possibly be phosphorylated by AKT2. These results suggest that other kinases, as well as PKC, may have important signaling functions in CD34.

2.
Mol Carcinog ; 50(12): 981-91, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21438027

RESUMEN

The T-box transcription factor, Tbx1, an important regulatory gene in development, is highly expressed in hair follicle (HF) stem cells in adult mice. Because mouse models of skin carcinogenesis have demonstrated that HF stem cells are a carcinogen target population and contribute significantly to tumor development, we investigated whether Tbx1 plays a role in skin carcinogenesis. We first assessed Tbx1 expression levels in mouse skin tumors, and found down-regulation in all tumors examined. To study the effect of Tbx1 expression on growth and tumorigenic potential of carcinoma cells, we transfected mouse Tbx1 cDNA into a mouse spindle cell carcinoma cell line that did not express endogenous Tbx1. Following transfection, two cell lines expressing different levels of the Tbx1/V5 fusion protein were selected for further study. Intradermal injection of the cell lines into mice revealed that Tbx1 expression significantly suppressed tumor growth, albeit with no change in tumor morphology. In culture, ectopic Tbx1 expression resulted in decreased cell growth and reduced development into multilayered colonies, compared to control cells. Tbx1-transfectants exhibited a reduced proliferative rate compared to control cells, with fewer cells in S and G2/M phases. The Tbx1 transfectants developed significantly fewer colonies in soft agar, demonstrating loss of anchorage-independent growth. Taken together, our data show that ectopic expression of Tbx1 restored contact inhibition to the skin tumor cells, suggesting that this developmentally important transcription factor may have a novel dual role as a negative regulator of tumor growth. © 2011 Wiley Periodicals, Inc.


Asunto(s)
Neoplasias Cutáneas/patología , Proteínas de Dominio T Box/metabolismo , Animales , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Inhibición de Contacto , Regulación Neoplásica de la Expresión Génica , Ratones , Ratones Transgénicos , Piel/metabolismo , Piel/patología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/metabolismo , Proteínas de Dominio T Box/biosíntesis , Proteínas de Dominio T Box/genética , Transfección
3.
Genome Res ; 19(9): 1507-15, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19416960

RESUMEN

Interindividual variability in response to chemicals and drugs is a common regulatory concern. It is assumed that xenobiotic-induced adverse reactions have a strong genetic basis, but many mechanism-based investigations have not been successful in identifying susceptible individuals. While recent advances in pharmacogenetics of adverse drug reactions show promise, the small size of the populations susceptible to important adverse events limits the utility of whole-genome association studies conducted entirely in humans. We present a strategy to identify genetic polymorphisms that may underlie susceptibility to adverse drug reactions. First, in a cohort of healthy adults who received the maximum recommended dose of acetaminophen (4 g/d x 7 d), we confirm that about one third of subjects develop elevations in serum alanine aminotransferase, indicative of liver injury. To identify the genetic basis for this susceptibility, a panel of 36 inbred mouse strains was used to model genetic diversity. Mice were treated with 300 mg/kg or a range of additional acetaminophen doses, and the extent of liver injury was quantified. We then employed whole-genome association analysis and targeted sequencing to determine that polymorphisms in Ly86, Cd44, Cd59a, and Capn8 correlate strongly with liver injury and demonstrated that dose-curves vary with background. Finally, we demonstrated that variation in the orthologous human gene, CD44, is associated with susceptibility to acetaminophen in two independent cohorts. Our results indicate a role for CD44 in modulation of susceptibility to acetaminophen hepatotoxicity. These studies demonstrate that a diverse mouse population can be used to understand and predict adverse toxicity in heterogeneous human populations through guided resequencing.


Asunto(s)
Acetaminofén/efectos adversos , Enfermedad Hepática Inducida por Sustancias y Drogas/genética , Enfermedad Hepática Inducida por Sustancias y Drogas/fisiopatología , Receptores de Hialuranos/genética , Análisis de Secuencia de ADN , Acetaminofén/administración & dosificación , Alanina Transaminasa/sangre , Animales , Estudios de Cohortes , Predisposición Genética a la Enfermedad , Humanos , Receptores de Hialuranos/química , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos , Polimorfismo Genético , Análisis de Secuencia de ADN/métodos , Especificidad de la Especie
4.
Am J Pathol ; 174(6): 2357-66, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19406993

RESUMEN

The Erbb2 receptor is activated by UV irradiation, the primary cause of non-melanoma skin cancer. We hypothesized that Erbb2 activation contributes to UV-induced skin tumorigenesis by suppressing cell cycle arrest. Consistent with this hypothesis, inhibition of Erbb2 in v-ras(Ha) transgenic mice before UV exposure resulted in both 56% fewer skin tumors and tumors that were 70% smaller. Inhibition of the UV-induced activation of Erbb2 also resulted in milder epidermal hyperplasia, S-phase accumulation, and decreased levels of the cell cycle regulator Cdc25a, suggesting altered cell cycle regulation on inhibition of Erbb2. Further investigation using inhibition or genetic deletion of Erbb2 in vitro revealed reduced Cdc25a levels and increased S-phase arrest in UV-irradiated cells lacking Erbb2 activity. Ectopic expression of Cdc25a prevented UV-induced S-phase arrest in keratinocytes lacking Erbb2 activity, demonstrating that maintenance of Cdc25a by Erbb2 suppresses cell cycle arrest. Examination of checkpoint pathway activation upstream of Cdc25a revealed Erbb2 activation did not alter Ataxia Telangiectasia and Rad3-related/Ataxia Telangiectasia Mutated activity but increased inhibitory phosphorylation of Chk1-Ser(280). Since Akt phosphorylates Chk1-Ser(280), the effect of Erbb2 on phosphatidyl inositol-3-kinase (PI3K)/Akt signaling during UV-induced cell cycle arrest was determined. Erbb2 ablation reduced the UV-induced activation of PI3K while inhibition of PI3K/Akt increased UV-induced S-phase arrest. Thus, UV-induced Erbb2 activation increases skin tumorigenesis through inhibitory phosphorylation of Chk1, Cdc25a maintenance, and suppression of S-phase arrest via a PI3K/Akt-dependent mechanism.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Genes cdc/efectos de la radiación , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de la radiación , Neoplasias Cutáneas/metabolismo , Animales , Transformación Celular Neoplásica/efectos de la radiación , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Daño del ADN/efectos de la radiación , Immunoblotting , Ratones , Ratones Transgénicos , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/efectos de la radiación , Fosforilación , Proteínas Quinasas/metabolismo , Proteínas Quinasas/efectos de la radiación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de la radiación , Neoplasias Cutáneas/genética , Rayos Ultravioleta , Fosfatasas cdc25/metabolismo , Fosfatasas cdc25/efectos de la radiación
5.
Cancer Res ; 68(20): 8278-85, 2008 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-18922899

RESUMEN

Arsenic is a carcinogen with transplacental activity that can affect human skin stem cell population dynamics in vitro by blocking exit into differentiation pathways. Keratinocyte stem cells (KSC) are probably a key target in skin carcinogenesis. Thus, we tested the effects of fetal arsenic exposure in Tg.AC mice, a strain sensitive to skin carcinogenesis via activation of the v-Ha-ras transgene likely in KSCs. After fetal arsenic treatment, offspring received topical 12-O-tetradecanoyl phorbol-13-acetate (TPA) through adulthood. Arsenic alone had no effect, whereas TPA alone induced papillomas and squamous cell carcinomas (SCC). However, fetal arsenic treatment before TPA increased SCC multiplicity 3-fold more than TPA alone, and these SCCs were much more aggressive (invasive, etc.). Tumor v-Ha-ras levels were 3-fold higher with arsenic plus TPA than TPA alone, and v-Ha-ras was overexpressed early on in arsenic-treated fetal skin. CD34, considered a marker for both KSCs and skin cancer stem cells, and Rac1, a key gene stimulating KSC self-renewal, were greatly increased in tumors produced by arsenic plus TPA exposure versus TPA alone, and both were elevated in arsenic-treated fetal skin. Greatly increased numbers of CD34-positive probable cancer stem cells and marked overexpression of RAC1 protein occurred in tumors induced by arsenic plus TPA compared with TPA alone. Thus, fetal arsenic exposure, although by itself oncogenically inactive in skin, facilitated cancer response in association with distorted skin tumor stem cell signaling and population dynamics, implicating stem cells as a target of arsenic in the fetal basis of skin cancer in adulthood.


Asunto(s)
Arsénico/toxicidad , Feto/efectos de los fármacos , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Cutáneas/inducido químicamente , Animales , Antígenos CD34/análisis , Antígenos CD34/genética , Carcinoma de Células Escamosas/inducido químicamente , Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular , Femenino , Genes ras , Ratones , Neuropéptidos/análisis , Neuropéptidos/genética , Embarazo , Proteínas , Neoplasias Cutáneas/genética , Acetato de Tetradecanoilforbol/toxicidad , Proteínas de Unión al GTP rac/análisis , Proteínas de Unión al GTP rac/genética , Proteína de Unión al GTP rac1
6.
J Mol Biol ; 383(3): 693-712, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18775730

RESUMEN

Deleted in Split hand/Split foot 1 (DSS1) was previously identified as a novel 12-O-tetradecanoylphorbol-13-acetate (TPA)-inducible gene with possible involvement in early event of mouse skin carcinogenesis. The mechanisms by which human DSS1 (HsDSS1) exerts its biological effects via regulation of the ubiquitin-proteasome system (UPS) are currently unknown. Here, we demonstrated that HsDSS1 regulates the human proteasome by associating with it in the cytosol and nucleus via the RPN3/S3 subunit of the 19S regulatory particle (RP). Molecular anatomy of HsDSS1 revealed an RPN3/S3-interacting motif (R3IM), located at amino acid residues 15 to 21 of the NH(2) terminus. Importantly, negative charges of the R3IM motif were demonstrated to be required for proteasome interaction and binding to poly-ubiquitinated substrates. Indeed, the R3IM motif of HsDSS1 protein alone was sufficient to replace the ability of intact HsDSS1 protein to pull down proteasome complexes and protein substrates with high-molecular mass ubiquitin conjugates. Interestingly, this interaction is highly conserved throughout evolution from humans to nematodes. Functional study, lowering the levels of the endogenous HsDSS1 using siRNA, indicates that the R3IM/proteasome complex binds and targets p53 for ubiquitin-mediated degradation via gankyrin-MDM2/HDM2 pathway. Most significantly, this work indicates that the R3IM motif of HsDSS1, in conjunction with the complexes of 19S RP and 20S core particle (CP), regulates proteasome interaction through RPN3/S3 molecule, and utilizes a specific subset of poly-ubiquitinated p53 as a substrate.


Asunto(s)
Secuencia de Aminoácidos , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Línea Celular , Evolución Molecular , Humanos , Ratones , Datos de Secuencia Molecular , Complejo de la Endopetidasa Proteasomal/química , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Alineación de Secuencia , Proteína p53 Supresora de Tumor/genética , Ubiquitina/metabolismo
7.
Genome Biol ; 9(6): R100, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18570634

RESUMEN

This report details the standardized experimental design and the different data streams that were collected (histopathology, clinical chemistry, hematology and gene expression from the target tissue (liver) and a bio-available tissue (blood)) after treatment with eight known hepatotoxicants (at multiple time points and doses with multiple biological replicates). The results of the study demonstrate the classification of histopathological differences, likely reflecting differences in mechanisms of cell-specific toxicity, using either liver tissue or blood transcriptomic data.


Asunto(s)
Sangre/metabolismo , Perfilación de la Expresión Génica , Hígado/lesiones , Hígado/metabolismo , Toxicogenética/métodos , Animales , Relación Dosis-Respuesta a Droga , Masculino , Ratas
9.
Nucleic Acids Res ; 36(Database issue): D892-900, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17962311

RESUMEN

CEBS (Chemical Effects in Biological Systems) is an integrated public repository for toxicogenomics data, including the study design and timeline, clinical chemistry and histopathology findings and microarray and proteomics data. CEBS contains data derived from studies of chemicals and of genetic alterations, and is compatible with clinical and environmental studies. CEBS is designed to permit the user to query the data using the study conditions, the subject responses and then, having identified an appropriate set of subjects, to move to the microarray module of CEBS to carry out gene signature and pathway analysis. Scope of CEBS: CEBS currently holds 22 studies of rats, four studies of mice and one study of Caenorhabditis elegans. CEBS can also accommodate data from studies of human subjects. Toxicogenomics studies currently in CEBS comprise over 4000 microarray hybridizations, and 75 2D gel images annotated with protein identification performed by MALDI and MS/MS. CEBS contains raw microarray data collected in accordance with MIAME guidelines and provides tools for data selection, pre-processing and analysis resulting in annotated lists of genes of interest. Additionally, clinical chemistry and histopathology findings from over 1500 animals are included in CEBS. CEBS/BID: The BID (Biomedical Investigation Database) is another component of the CEBS system. BID is a relational database used to load and curate study data prior to export to CEBS, in addition to capturing and displaying novel data types such as PCR data, or additional fields of interest, including those defined by the HESI Toxicogenomics Committee (in preparation). BID has been shared with Health Canada and the US Environmental Protection Agency. CEBS is available at http://cebs.niehs.nih.gov. BID can be accessed via the user interface from https://dir-apps.niehs.nih.gov/arc/. Requests for a copy of BID and for depositing data into CEBS or BID are available at http://www.niehs.nih.gov/cebs-df/.


Asunto(s)
Bases de Datos Genéticas , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteómica , Toxicogenética , Animales , Humanos , Internet , Ratones , Ratas , Integración de Sistemas , Interfaz Usuario-Computador
11.
Toxicol Sci ; 99(1): 326-37, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17562736

RESUMEN

Gene expression profiling is a widely used technique with data from the majority of published microarray studies being publicly available. These data are being used for meta-analyses and in silico discovery; however, the comparability of toxicogenomic data generated in multiple laboratories has not been critically evaluated. Using the power of prospective multilaboratory investigations, seven centers individually conducted a common toxicogenomics experiment designed to advance understanding of molecular pathways perturbed in liver by an acute toxic dose of N-acetyl-p-aminophenol (APAP) and to uncover reproducible genomic signatures of APAP-induced toxicity. The nonhepatotoxic APAP isomer N-acetyl-m-aminophenol was used to identify gene expression changes unique to APAP. Our data show that c-Myc is induced by APAP and that c-Myc-centered interactomes are the most significant networks of proteins associated with liver injury. Furthermore, sources of error and data variability among Centers and methods to accommodate this variability were identified by coupling gene expression with extensive toxicological evaluation of the toxic responses. We show that phenotypic anchoring of gene expression data is required for biologically meaningful analysis of toxicogenomic experiments.


Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Perfilación de la Expresión Génica/métodos , Expresión Génica/efectos de los fármacos , Genómica/métodos , Hígado/efectos de los fármacos , Animales , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Determinación de Punto Final , Islas Genómicas , Isomerismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fenotipo , Reproducibilidad de los Resultados , alfa-Amilasas Salivales , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
12.
Cancer Res ; 67(9): 4173-81, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17483328

RESUMEN

The cell surface marker CD34 marks mouse hair follicle bulge cells, which have attributes of stem cells, including quiescence and multipotency. Using a CD34 knockout (KO) mouse, we tested the hypothesis that CD34 may participate in tumor development in mice because hair follicle stem cells are thought to be a major target of carcinogens in the two-stage model of mouse skin carcinogenesis. Following initiation with 200 nmol 7,12-dimethylbenz(a)anthracene (DMBA), mice were promoted with 12-O-tetradecanoylphorbol-13-acetate (TPA) for 20 weeks. Under these conditions, CD34KO mice failed to develop papillomas. Increasing the initiating dose of DMBA to 400 nmol resulted in tumor development in the CD34KO mice, albeit with an increased latency and lower tumor yield compared with the wild-type (WT) strain. DNA adduct analysis of keratinocytes from DMBA-initiated CD34KO mice revealed that DMBA was metabolically activated into carcinogenic diol epoxides at both 200 and 400 nmol. Chronic exposure to TPA revealed that CD34KO skin developed and sustained epidermal hyperplasia. However, CD34KO hair follicles typically remained in telogen rather than transitioning into anagen growth, confirmed by retention of bromodeoxyuridine-labeled bulge stem cells within the hair follicle. Unique localization of the hair follicle progenitor cell marker MTS24 was found in interfollicular basal cells in TPA-treated WT mice, whereas staining remained restricted to the hair follicles of CD34KO mice, suggesting that progenitor cells migrate into epidermis differently between strains. These data show that CD34 is required for TPA-induced hair follicle stem cell activation and tumor formation in mice.


Asunto(s)
Antígenos CD34/biosíntesis , Folículo Piloso/metabolismo , Neoplasias Cutáneas/metabolismo , Células Madre/metabolismo , 9,10-Dimetil-1,2-benzantraceno , Animales , Antígenos CD34/genética , Ciclo Celular/fisiología , Movimiento Celular/fisiología , Femenino , Folículo Piloso/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neoplasias Cutáneas/inducido químicamente , Neoplasias Cutáneas/patología , Células Madre/patología , Acetato de Tetradecanoilforbol
13.
Toxicol Sci ; 98(2): 488-94, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17483498

RESUMEN

This study examined the role of oxidative stress in neurotoxic effects of cadmium chloride (Cd) in rat primary mid-brain neuron-glia cultures. Cd accumulated in neuron-glia cultures and produced cytotoxicity in a dose-dependent manner, with IC(50) of 2.5microM 24 h after exposure. (3)H-dopamine uptake into neuron-glia cultures was decreased 7 days after Cd exposure, with IC(50) of 0.9microM, indicative of the sensitivity of dopaminergic neurons to Cd toxicity. To investigate the role of microglia in Cd-induced toxicity to neurons, microglia-enriched cultures were prepared. Cd significantly increased intracellular reactive oxygen species production in microglia-enriched cultures, as evidenced by threefold increases in 2',7'-dichlorofluorescein signals. Using 5,5-dimethyl-1-pyrroline N-oxide as a spin-trapping agent, Cd increased electron spin resonance signals by 3.5-fold in microglia-enriched cultures. Cd-induced oxidative stress to microglia-enriched cultures was further evidenced by activation of redox-sensitive transcription factor nuclear factor kappa B and activator protein-1 (AP-1), and the increased expression of oxidative stress-related genes, such as metallothionein, heme oxygenase-1, glutathione S-transferase pi, and metal transport protein-1, as determined by gel-shift assays and real-time reverse transcription-PCR, respectively, in microglia-enriched cultures. In conclusion, Cd is toxic to neuron-glia cultures, and the oxidative stress from microglia may play important roles in Cd-induced damage to dopaminergic neurons.


Asunto(s)
Cadmio/toxicidad , Dopamina/metabolismo , Neuroglía/efectos de los fármacos , Estrés Oxidativo , Animales , Proteínas de Transporte de Catión/genética , Células Cultivadas , Expresión Génica/efectos de los fármacos , Gutatión-S-Transferasa pi/genética , Hemo-Oxigenasa 1/genética , Mesencéfalo/citología , Metalotioneína/genética , FN-kappa B/metabolismo , Neuroglía/metabolismo , Ratas , Ratas Endogámicas F344 , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción AP-1/metabolismo
14.
Toxicol Sci ; 99(1): 26-34, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17442663

RESUMEN

Data from toxicology and toxicogenomics studies are valuable, and can be combined for meta-analysis using public data repositories such as Chemical Effects in Biological Systems Knowledgebase, ArrayExpress, and Gene Expression Omnibus. In order to fully utilize the data for secondary analysis, it is necessary to have a description of the study and good annotation of the accompanying data. This study annotation permits sophisticated cross-study comparison and analysis, and allows data from comparable subjects to be identified and fully understood. The Minimal Information About a Microarray Experiment Standard was proposed to permit deposition and sharing of microarray data. We propose the first step toward an analogous standard for a toxicogenomics/toxicology study, by describing a checklist of information that best practices would suggest be included with the study data. When the information in this checklist is deposited together with the study data, the checklist information helps the public explore the study data in context of time, or identify data from similarly treated subjects, and also explore/identify potential sources of experimental variability. The proposed checklist summarizes useful information to include when sharing study data for publication, deposition into a database, or electronic exchange with collaborators. It is not a description of how to carry out an experiment, but a definition of how to describe an experiment. It is anticipated that once a toxicology checklist is accepted and put into use, then toxicology databases can be configured to require and output these fields, making it straightforward to annotate data for interpretation by others.


Asunto(s)
Interpretación Estadística de Datos , Bases de Datos Genéticas , Pruebas de Toxicidad/métodos , Animales , Recolección de Datos , Presentación de Datos , Metaanálisis como Asunto , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/estadística & datos numéricos , Programas Informáticos , Pruebas de Toxicidad/estadística & datos numéricos
15.
Toxicol Appl Pharmacol ; 220(3): 284-91, 2007 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-17350061

RESUMEN

Exposure to inorganic arsenic in utero in C3H mice produces hepatocellular carcinoma in male offspring when they reach adulthood. To help define the molecular events associated with the fetal onset of arsenic hepatocarcinogenesis, pregnant C3H mice were given drinking water containing 0 (control) or 85 ppm arsenic from day 8 to 18 of gestation. At the end of the arsenic exposure period, male fetal livers were removed and RNA isolated for microarray analysis using 22K oligo chips. Arsenic exposure in utero produced significant (p<0.001) alterations in expression of 187 genes, with approximately 25% of aberrantly expressed genes related to either estrogen signaling or steroid metabolism. Real-time RT-PCR on selected genes confirmed these changes. Various genes controlled by estrogen, including X-inactive-specific transcript, anterior gradient-2, trefoil factor-1, CRP-ductin, ghrelin, and small proline-rich protein-2A, were dramatically over-expressed. Estrogen-regulated genes including cytokeratin 1-19 and Cyp2a4 were over-expressed, although Cyp3a25 was suppressed. Several genes involved with steroid metabolism also showed remarkable expression changes, including increased expression of 17beta-hydroxysteroid dehydrogenase-7 (HSD17beta7; involved in estradiol production) and decreased expression of HSD17beta5 (involved in testosterone production). The expression of key genes important in methionine metabolism, such as methionine adenosyltransferase-1a, betaine-homocysteine methyltransferase and thioether S-methyltransferase, were suppressed. Thus, exposure of mouse fetus to inorganic arsenic during a critical period in development significantly alters the expression of various genes encoding estrogen signaling and steroid or methionine metabolism. These alterations could disrupt genetic programming at the very early life stage, which could impact tumor formation much later in adulthood.


Asunto(s)
Arsenitos/toxicidad , Estrógenos/metabolismo , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Intercambio Materno-Fetal , Transducción de Señal/efectos de los fármacos , Compuestos de Sodio/toxicidad , Esteroides/metabolismo , Animales , Análisis por Conglomerados , Relación Dosis-Respuesta a Droga , Femenino , Feto/metabolismo , Perfilación de la Expresión Génica/métodos , Masculino , Ratones , Ratones Endogámicos C3H , Análisis de Secuencia por Matrices de Oligonucleótidos , Embarazo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
16.
Environ Health Perspect ; 114(3): 404-11, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16507464

RESUMEN

Our previous work has shown that exposure to inorganic arsenic in utero produces hepatocellular carcinoma (HCC) in adult male mice. To explore further the molecular mechanisms of transplacental arsenic hepatocarcinogenesis, we conducted a second arsenic transplacental carcinogenesis study and used a genomewide microarray to profile arsenic-induced aberrant gene expression more extensively. Briefly, pregnant C3H mice were given drinking water containing 85 ppm arsenic as sodium arsenite or unaltered water from days 8 to 18 of gestation. The incidence of HCC in adult male offspring was increased 4-fold and tumor multiplicity 3-fold after transplacental arsenic exposure. Samples of normal liver and liver tumors were taken at autopsy for genomic analysis. Arsenic exposure in utero resulted in significant alterations (p < 0.001) in the expression of 2,010 genes in arsenic-exposed liver samples and in the expression of 2,540 genes in arsenic-induced HCC. Ingenuity Pathway Analysis revealed that significant alterations in gene expression occurred in a number of biological networks, and Myc plays a critical role in one of the primary networks. Real-time reverse transcriptase-polymerase chain reaction and Western blot analysis of selected genes/proteins showed > 90% concordance. Arsenic-altered gene expression included activation of oncogenes and HCC biomarkers, and increased expression of cell proliferation-related genes, stress proteins, and insulin-like growth factors and genes involved in cell-cell communications. Liver feminization was evidenced by increased expression of estrogen-linked genes and altered expression of genes that encode gender-related metabolic enzymes. These novel findings are in agreement with the biology and histology of arsenic-induced HCC, thereby indicating that multiple genetic events are associated with transplacental arsenic hepatocarcinogenesis.


Asunto(s)
Arsénico/toxicidad , Carcinoma Hepatocelular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Hígado/efectos de los fármacos , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Perfilación de la Expresión Génica , Hígado/metabolismo , Masculino , Intercambio Materno-Fetal , Ratones , Ratones Endogámicos C3H , Embarazo , Toxicogenética
17.
Mol Carcinog ; 45(2): 126-40, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16329151

RESUMEN

This study analyzes gene expression associated with papilloma development in Tg.AC v-Ha-ras transgenic mice and identifies novel genes and biological processes that may be critical to skin carcinogenesis in these mice. Epidermal abrasion was used to synchronously induce epidermal regeneration in FVB/N wild type and transgenic Tg.AC mice. Skin papillomagenesis was uniquely induced in Tg.AC mice, and gene expression profiling was carried out using a 22,000 element mouse DNA microarray. Histological analysis showed that papillomas developed at a high rate by d 30 after abrasion in transgenic animals, while no papilloma developed in wild type mice. Transgene-specific differentially expressed genes were identified at d 30 postabrasion and these genes were annotated using EASE software and literature mining. Annotated and non-annotated genes associated with papilloma development were identified and clustering analysis revealed groups of genes that are coordinately expressed. A number of genes associated with differentiation and development were also physically clustered on mouse chromosome 16, including 16B3 that contains several Stefins and stefin-like genes, and 16A1 containing a number of keratin associated protein genes. Additional analyses presented here yield novel insights into the genes and processes involved in papilloma development in Tg.AC mice.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Papiloma/genética , Neoplasias Cutáneas/genética , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Genes ras , Cinética , Ratones , Ratones Transgénicos , Análisis de Secuencia por Matrices de Oligonucleótidos , Papiloma/patología , Neoplasias Cutáneas/patología , Programas Informáticos
18.
Oncogene ; 24(56): 8217-28, 2005 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-16355251

RESUMEN

The genetically initiated Tg.AC transgenic mouse carries a transgene consisting of an oncogenic v-Ha-ras coding region flanked 5' by a mouse zeta-globin promoter and 3' by an SV-40 polyadenylation sequence. Located on chromosome 11, the transgene is transcriptionally silent until activated by chemical carcinogens, UV light, or full-thickness wounding. Expression of the transgene is an early event that drives cellular proliferation resulting in clonal expansion and tumor formation, the unique characteristics now associated with the Tg.AC mouse. This ras-dependent phenotype has resulted in the widespread interest and use of the Tg.AC mouse in experimental skin carcinogenesis and as an alternative carcinogenesis assay. This review examines the general biology of the tumorigenic responses observed in Tg.AC mice, the genetic interactions of the ras transgene, and explores the cellular and molecular regulation of zeta-globin promoted transgene expression. As a prototype alternative model to the current long-term rodent bioassays, the Tg.AC has generated a healthy discussion on the future of transgenic bioassays, and opened the doors for subsequent models for toxicity testing. The further exploration and elucidation of the molecular controls of transgene expression will enhance the usefulness of this mouse and enable a better understanding of the Tg.AC's discriminate response to chemical carcinogens.


Asunto(s)
Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Genes ras , Ratones Transgénicos , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Animales , Humanos , Ratones , Neoplasias Cutáneas/metabolismo
20.
Cancer Res ; 65(9): 3958-65, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15867397

RESUMEN

The epidermal growth factor receptor (EGFR) is activated in skin cells following UV irradiation, the primary cause of nonmelanoma skin cancer. The EGFR inhibitor AG1478 prevented the UV-induced activation of EGFR and of downstream signaling pathways through c-Jun NH2-terminal kinases, extracellular signal-regulated kinases, p38 kinase, and phosphatidylinositol 3-kinase in the skin. The extent to which the UV-induced activation of EGFR influences skin tumorigenesis was determined in genetically initiated v-ras(Ha) transgenic Tg.AC mice, which have enhanced susceptibility to skin carcinogenesis. Topical treatment or i.p. injection of AG1478 before UV exposure blocked the UV-induced activation of EGFR in the skin and decreased skin tumorigenesis in Tg.AC mice. AG1478 treatment before each of several UV exposures decreased the number of papillomas arising and the growth of these tumors by approximately 50% and 80%, respectively. Inhibition of EGFR suppressed proliferation, increased apoptotic cell death, and delayed the onset of epidermal hyperplasia following UV irradiation. Genetic ablation of Egfr similarly delayed epidermal hyperplasia in response to UV exposure. Thus, the UV-induced activation of EGFR promotes skin tumorigenesis by suppressing cell death, augmenting cell proliferation, and accelerating epidermal hyperplasia in response to UV. These results suggest that EGFR may be an appropriate target for the chemoprevention of UV-induced skin cancer.


Asunto(s)
Anticarcinógenos/farmacología , Receptores ErbB/antagonistas & inhibidores , Neoplasias Inducidas por Radiación/prevención & control , Neoplasias Cutáneas/prevención & control , Tirfostinos/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Proliferación Celular/efectos de la radiación , Activación Enzimática/efectos de la radiación , Inhibidores Enzimáticos/farmacología , Receptores ErbB/deficiencia , Receptores ErbB/fisiología , Hiperplasia , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Ratones , Ratones Desnudos , Neoplasias Inducidas por Radiación/enzimología , Neoplasias Inducidas por Radiación/etiología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt , Quinazolinas , Piel/patología , Piel/efectos de la radiación , Neoplasias Cutáneas/enzimología , Neoplasias Cutáneas/etiología , Rayos Ultravioleta/efectos adversos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...