Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Negl Trop Dis ; 17(11): e0011543, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37956170

RESUMEN

Lassa fever (Lf) is a viral haemorrhagic disease endemic to West Africa and is caused by the Lassa mammarenavirus. The rodent Mastomys natalensis serves as the primary reservoir and its ecology and behaviour have been linked to the distinct spatial and temporal patterns in the incidence of Lf. Nigeria has experienced an unprecedented epidemic that lasted from January until April of 2018, which has been followed by subsequent epidemics of Lf in the same period every year since. While previous research has modelled the case seasonality within Nigeria, this did not capture the seasonal variation in the reproduction of the zoonotic reservoir and its effect on case numbers. To this end, we introduce an approximate Bayesian computation scheme to fit our model to the case data from 2018-2020 supplied by the NCDC. In this study we used a periodically forced seasonal nonautonomous system of ordinary differential equations as a vector model to demonstrate that the population dynamics of the rodent reservoir may be responsible for the spikes in the number of observed cases in humans. The results show that in December through to March, spillover from the zoonotic reservoir drastically increases and spreads the virus to the people of Nigeria. Therefore to effectively combat Lf, attention and efforts should be concentrated during this period.


Asunto(s)
Fiebre de Lassa , Animales , Humanos , Fiebre de Lassa/epidemiología , Nigeria/epidemiología , Incidencia , Teorema de Bayes , Virus Lassa , Murinae
2.
PLoS Comput Biol ; 19(9): e1011448, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672554

RESUMEN

African horse sickness is an equine orbivirus transmitted by Culicoides Latreille biting midges. In the last 80 years, it has caused several devastating outbreaks in the equine population in Europe, the Far and Middle East, North Africa, South-East Asia, and sub-Saharan Africa. The disease is endemic in South Africa; however, a unique control area has been set up in the Western Cape where increased surveillance and control measures have been put in place. A deterministic metapopulation model was developed to explore if an outbreak might occur, and how it might develop, if a latently infected horse was to be imported into the control area, by varying the geographical location and months of import. To do this, a previously published ordinary differential equation model was developed with a metapopulation approach and included a vaccinated horse population. Outbreak length, time to peak infection, number of infected horses at the peak, number of horses overall affected (recovered or dead), re-emergence, and Rv (the basic reproduction number in the presence of vaccination) were recorded and displayed using GIS mapping. The model predictions were compared to previous outbreak data to ensure validity. The warmer months (November to March) had longer outbreaks than the colder months (May to September), took more time to reach the peak, and had a greater total outbreak size with more horses infected at the peak. Rv appeared to be a poor predictor of outbreak dynamics for this simulation. A sensitivity analysis indicated that control measures such as vaccination and vector control are potentially effective to manage the spread of an outbreak, and shortening the vaccination window to July to September may reduce the risk of vaccine-associated outbreaks.


Asunto(s)
Enfermedad Equina Africana , Animales , Caballos , Sudáfrica/epidemiología , Enfermedad Equina Africana/epidemiología , Enfermedad Equina Africana/prevención & control , Brotes de Enfermedades/veterinaria , Número Básico de Reproducción , Simulación por Computador
3.
Nat Commun ; 12(1): 5593, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34552082

RESUMEN

The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004-2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.


Asunto(s)
Modelos Teóricos , Fiebre del Valle del Rift/prevención & control , Fiebre del Valle del Rift/transmisión , Virus de la Fiebre del Valle del Rift/fisiología , Animales , Comoras/epidemiología , Ganado/virología , Fiebre del Valle del Rift/epidemiología , Estudios Seroepidemiológicos , Zoonosis/epidemiología , Zoonosis/prevención & control , Zoonosis/transmisión
4.
Proc Biol Sci ; 287(1928): 20200538, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32517609

RESUMEN

Plague, caused by Yersinia pestis infection, continues to threaten low- and middle-income countries throughout the world. The complex interactions between rodents and fleas with their respective environments challenge our understanding of human plague epidemiology. Historical long-term datasets of reported plague cases offer a unique opportunity to elucidate the effects of climate on plague outbreaks in detail. Here, we analyse monthly plague deaths and climate data from 25 provinces in British India from 1898 to 1949 to generate insights into the influence of temperature, rainfall and humidity on the occurrence, severity and timing of plague outbreaks. We find that moderate relative humidity levels of between 60% and 80% were strongly associated with outbreaks. Using wavelet analysis, we determine that the nationwide spread of plague was driven by changes in humidity, where, on average, a one-month delay in the onset of rising humidity translated into a one-month delay in the timing of plague outbreaks. This work can inform modern spatio-temporal predictive models for the disease and aid in the development of early-warning strategies for the deployment of prophylactic treatments and other control measures.


Asunto(s)
Clima , Brotes de Enfermedades/historia , Peste/epidemiología , Animales , Historia del Siglo XIX , Historia del Siglo XX , Humanos , India/epidemiología , Roedores , Estaciones del Año , Siphonaptera , Temperatura , Yersinia pestis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...