Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Exp Suppl ; 113: 295-350, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35165868

RESUMEN

The immune checkpoint cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 or CD152) is a negative regulator of T-cell-mediated immune responses which plays a critical role in suppressing autoimmunity and maintaining immune homeostasis. Because of its inhibitory activity on T cells, CTLA-4 has been investigated as a drug target to induce immunostimulation, blocking the interaction with its ligands. The antitumor effects mediated by CTLA-4 blockade have been attributed to a sustained active immune response against cancer cells, due to the release of a brake on T cell activation. Ipilimumab (Yervoy, Bristol-Myers Squibb) is a fully human anti-CTLA-4 IgG1κ monoclonal antibody (mAb) that represents the first immune checkpoint inhibitor approved as monotherapy by FDA and EMA in 2011 for the treatment of unresectable/metastatic melanoma. In 2015, FDA also granted approval to ipilimumab monotherapy as adjuvant treatment of stage III melanoma to reduce the risk of tumour recurrence. The subsequent approved indications of ipilimumab for metastatic melanoma, regardless of BRAF mutational status, and other advanced/metastatic solid tumours always involve its use in association with the anti-programmed cell death protein 1 (PD-1) mAb nivolumab. Currently, ipilimumab is evaluated in ongoing clinical trials for refractory/advanced solid tumours mainly in combination with additional immunostimulating agents.


Asunto(s)
Anticuerpos Monoclonales , Melanoma , Anticuerpos Monoclonales/uso terapéutico , Antígeno CTLA-4/genética , Humanos , Ipilimumab , Melanoma/tratamiento farmacológico , Melanoma/genética , Recurrencia Local de Neoplasia
2.
Pharmacol Res ; 159: 104957, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32485280

RESUMEN

The vascular endothelial growth factor receptor-1 (VEGFR-1) is a membrane receptor for VEGF-A, placenta growth factor (PlGF) and VEGF-B that plays a crucial role in melanoma invasiveness, vasculogenic mimicry and tumor-associated angiogenesis. Furthermore, activation of VEGFR-1 is involved in the mobilization of myeloid progenitors from the bone marrow that infiltrate the tumor. Myeloid-derived suppressor cells and tumor-associated macrophages have been involved in tumor progression and resistance to cancer treatment with immune checkpoint inhibitors (ICIs). We have recently demonstrated that the anti-VEGFR-1 monoclonal antibody (mAb) D16F7 developed in our laboratories is able to inhibit melanoma growth in preclinical in vivo models and to reduce monocyte/macrophage progenitor mobilization and tumor infiltration by myeloid cells. Aim of the study was to investigate whether the anti-VEGFR-1 mAb D16F7 affects the activity of protumoral M2 macrophages in vitro in response to PlGF and inhibits the recruitment of these cells to the melanoma site in vivo. Finally, we tested whether, through its multi-targeted action, D16F7 mAb might increase the efficacy of ICIs against melanoma. The results indicated that VEGFR-1 expression is up-regulated in human activated M2 macrophages compared to activated M1 cells and exposure to the D16F7 mAb decreases in vitro chemotaxis of activated M2 macrophages. In vivo treatment with the anti-VEGFR-1 mAb D16F7 of B6D2F1 mice injected with syngeneic B16F10 melanoma cells resulted in tumor growth inhibition associated with the modification of tumor microenvironment that involves a decrease of melanoma infiltration by M2 macrophages and PD-1+ and FoxP3+ cells. These alterations result in increased M1/M2 and CD8+/FoxP3+ ratios, which favor an antitumor and immunostimulating milieu. Accordingly, D16F7 mAb increased the antitumor activity of the ICIs anti-CTLA-4 and anti-PD-1 mAbs. Overall, these data reinforce the role of VEGFR-1-mediated-signalling as a valid target for reducing tumor infiltration by protumoral macrophages and for improving the efficacy of immunotherapy with ICIs.


Asunto(s)
Anticuerpos Monoclonales/farmacología , Antineoplásicos Inmunológicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Macrófagos Asociados a Tumores/efectos de los fármacos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Línea Celular Tumoral , Humanos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Activación de Macrófagos/efectos de los fármacos , Masculino , Melanoma/inmunología , Melanoma/metabolismo , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Ratones , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Microambiente Tumoral , Macrófagos Asociados a Tumores/inmunología , Macrófagos Asociados a Tumores/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/inmunología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
3.
J Cell Mol Med ; 24(1): 465-475, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31758648

RESUMEN

The vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor frequently expressed in melanoma. Its activation by VEGF-A or placental growth factor (PlGF) promotes tumour cell survival, migration and invasiveness. Moreover, VEGFR-1 stimulation contributes to pathological angiogenesis and induces recruitment of tumour-associated macrophages. Since melanoma acquired resistance to BRAF inhibitors (BRAFi) has been associated with activation of pro-angiogenic pathways, we have investigated VEGFR-1 involvement in vemurafenib resistance. Results indicate that human melanoma cells rendered resistant to vemurafenib secrete greater amounts of VEGF-A and express higher VEGFR-1 levels compared with their BRAFi-sensitive counterparts. Transient VEGFR-1 silencing in susceptible melanoma cells delays resistance development, whereas in resistant cells it increases sensitivity to the BRAFi. Consistently, enforced VEGFR-1 expression, by stable gene transfection in receptor-negative melanoma cells, markedly reduces sensitivity to vemurafenib. Moreover, melanoma cells expressing VEGFR-1 are more invasive than VEGFR-1 deficient cells and receptor blockade by a specific monoclonal antibody (D16F7 mAb) reduces extracellular matrix invasion triggered by VEGF-A and PlGF. These data suggest that VEGFR-1 up-regulation might contribute to melanoma progression and spreading after acquisition of a drug-resistant phenotype. Thus, VEGFR-1 inhibition with D16F7 mAb might be a suitable adjunct therapy for VEGFR-1 positive tumours with acquired resistance to vemurafenib.


Asunto(s)
Resistencia a Antineoplásicos , Melanoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias Cutáneas/tratamiento farmacológico , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Vemurafenib/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Silenciador del Gen/efectos de los fármacos , Humanos , Melanoma/patología , Invasividad Neoplásica , Fenotipo , Factor de Crecimiento Placentario/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Neoplasias Cutáneas/patología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Vemurafenib/farmacología
4.
Chemotherapy ; 64(3): 138-145, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31639786

RESUMEN

BACKGROUND: PD-L1 is a membrane protein with inhibitory effects on immune responses, whose expression has been correlated with high aggressiveness and the propensity of melanoma to metastasize. The nitrobenzoxadiazole (NBD) NBDHEX and its analog MC3181 are endowed with strong antitumor activity towards melanoma and a significant ability to reduce its adhesion and invasiveness. Therefore, we investigated whether PD-L1 status could affect cell sensitivity to the cytotoxic effects of NBDs. We then evaluated the effects of NBDHEX on PD-L1 expression and autophagy in melanoma cells. We used the BRAF-mutated A375 melanoma cell line and an A375 variant population enriched for PD-L1+ cells as a model. The cytotoxic effects of NBDs were evaluated in comparison to those of the BRAF inhibitor vemurafenib and the autophagy inhibitor chloroquine. METHODS: The effect of NBDHEX on autophagy was determined by measuring LC3-II and p62 protein levels by Western blot. The cytotoxic activity of the compounds was evaluated by sulforhodamine B assay. PD-L1 expression and plasma membrane localization were analyzed by FACS and Western blot analysis. RESULTS: NBDHEX behaves as a late-autophagy inhibitor in A375 melanoma cells, as previously found in other tumor cell lines. NBDHEX and MC3181 showed strong and comparable cytotoxic activity in both parental and PD-L1+ A375 cells, with IC50 values in the sub-micromolar range. Conversely, cells sorted for high PD-L1 expression had lower sensitivity to both the BRAF inhibitor vemurafenib and the autophagy inhibitor chloroquine. NBDHEX treatment did not change the total expression and cell surface localization of PD-L1 in both parental and PD-L1+ A375 cells. CONCLUSIONS: Our data suggest that NBDs may represent a promising treatment strategy for melanoma with elevated PD-L1 expression.


Asunto(s)
Autofagia/efectos de los fármacos , Antígeno B7-H1/metabolismo , Glutatión Transferasa/antagonistas & inhibidores , Nitrobencenos/farmacología , Oxadiazoles/farmacología , Antígeno B7-H1/genética , Línea Celular Tumoral , Cloroquina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión Transferasa/metabolismo , Humanos , Melanoma , Nitrobencenos/química , Oxadiazoles/química , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Proteínas Proto-Oncogénicas B-raf/metabolismo , Vemurafenib/farmacología
5.
Cancers (Basel) ; 11(9)2019 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527467

RESUMEN

Myelodysplastic syndromes (MDS) are highly heterogeneous myeloid diseases, characterized by frequent genetic/chromosomal aberrations. Olaparib is a potent, orally bioavailable poly(ADP-ribose) polymerase 1 (PARP1) inhibitor with acceptable toxicity profile, designed as targeted therapy for DNA repair defective tumors. Here, we investigated olaparib activity in primary cultures of bone marrow mononuclear cells collected from patients with MDS (n = 28). A single treatment with olaparib induced cytotoxic effects in most samples, with median IC50 of 5.4 µM (2.0-24.8 µM), lower than plasma peak concentration reached in vivo. In addition, olaparib induced DNA damage as shown by a high proportion of γH2AX positive cells in samples with low IC50s. Olaparib preferentially killed myeloid cells causing a significant reduction of blasts and promyelocytes, paralleled by an increase in metamyelocytes and mature granulocytes while sparing lymphocytes that are not part of the MDS clone. Consistently, flow cytometry analysis revealed a decrease of CD117+/CD123+ immature progenitors (p < 0.001) and induction of CD11b+/CD16+ (p < 0.001) and CD10+/CD15+ (p < 0.01) neutrophils. Morphological and immunophenotypic changes were associated with a dose-dependent increase of PU.1 and CEBPA transcription factors, which are drivers of granulocytic and monocytic differentiation. Moreover, the combination of olaparib with decitabine resulted in augmented cytotoxic and differentiating effects. Our data suggest that olaparib may have therapeutic potential in MDS patients.

6.
Nutrients ; 10(11)2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30441769

RESUMEN

Ellagic acid (EA) is a naturally occurring polyphenolic compound endowed with strong antioxidant and anticancer properties that is present in high quantity in a variety of berries, pomegranates, and dried fruits. The antitumor activity of EA has been mostly attributed to direct antiproliferative and apoptotic effects. Moreover, EA can inhibit tumour cell migration, extra-cellular matrix invasion and angiogenesis, all processes that are crucial for tumour infiltrative behaviour and the metastatic process. In addition, EA may increase tumour sensitivity to chemotherapy and radiotherapy. The aim of this review is to summarize the in vitro and in vivo experimental evidence supporting the anticancer activity of pure EA, its metabolites, and EA-containing fruit juice or extracts in a variety of solid tumour models. The EA oral administration as supportive therapy to standard chemotherapy has been recently evaluated in small clinical studies with colorectal or prostate cancer patients. Novel formulations with improved solubility and bioavailability are expected to fully develop the therapeutic potential of EA derivatives in the near future.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Fitogénicos/farmacología , Ácido Elágico/farmacología , Inhibidores de la Angiogénesis/química , Animales , Antineoplásicos Fitogénicos/química , Ácido Elágico/química
7.
Pharmacol Res ; 131: 1-6, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29530602

RESUMEN

In recent years, immune checkpoint inhibitors (ICpI) have provided the ground to bring tumor immunity back to life thanks to their capacity to afford a real clinical benefit in terms of patient's survival. Essential to ICpI success is the presence of tumor-associated neoantigens generated by non-synonymous mutations, since a direct relationship between mutation load of malignant cells and susceptibility to ICpI has been confidently established. However, it has been also suggested that high intratumor heterogeneity (ITH) associated with subclonal neoantigens could not elicit adequate immune responses. Several years ago we discovered that in vivo treatment of leukemic mice with triazene compounds (TZC) produces a marked increase of leukemia cell immunogenicity [a phenomenon termed Drug-Induced Xenogenization (DIX)] through point mutations able to generate strong tumor neoantigens (Drug-Induced Neoantigens, DIN). Immunogenic mutations are produced by TZC-dependent methylation of O6-guanine of DNA, that is suppressed by the DNA repair protein methyl-guaninemethyltransferase (MGMT). This minireview illustrates preclinical investigations conducted in animal models where DIN-positive murine leukemia cells were inoculated intracerebrally into histocompatible mice. The analysis of the literature indicates that the growth of xenogenized malignant cells is controlled by anti-DIN graft responses and by intra-cerebral or intravenous adoptive transfer of anti-DIN cytotoxic T lymphocytes. This survey reminds also that PARP inhibitors increase substantially the antitumor activity of TZC and can be administered with the intent of suppressing more efficiently tumor load and possibly reducing ITH through downsizing the polyclonality of xenogenized tumor cell population. Finally, the present report illustrates a hypothetical clinical protocol that could be considered as an example of future development of DIXbased tumor immuno-chemotherapy in brain malignancies. The protocol involves oral or intravenous administration of TZC along with loco-regional (i.e. intracerebral "wafer") treatment with agents able to increase tumor cell sensitivity to the cytotoxic and xenogenizing effects of TZC (i.e. MGMT and PARP inhibitors) without enhancing the systemic toxicity of these DNA methylating compounds.


Asunto(s)
Inmunoterapia/métodos , Neoplasias/terapia , Triazenos/uso terapéutico , Animales , Encéfalo/efectos de los fármacos , Encéfalo/inmunología , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/terapia , Metilación de ADN/efectos de los fármacos , Humanos , Inmunidad/efectos de los fármacos , Leucemia/genética , Leucemia/inmunología , Leucemia/patología , Leucemia/terapia , Mutación/efectos de los fármacos , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/patología , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/trasplante , Triazenos/inmunología
8.
Oncol Rep ; 39(5): 2261-2269, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29512738

RESUMEN

The vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase receptor activated by the angiogenic factors VEGF­A and placental growth factor (PlGF). While VEGF­A binds to both VEGFR­1 and VEGFR­2, PlGF interacts exclusively with VEGFR­1 triggering a signaling pathway involved in: i) tumor­associated angiogenesis; ii) chemotaxis and invasion of the extracellular matrix (ECM) by cancer cells; and iii) mobilization of bone marrow­derived myeloid cells that generate tumor­associated macrophages. By using a novel anti­VEGFR­1 monoclonal antibody (D16F7 mAb), which hampers receptor activation without avoiding ligand binding, we recently demonstrated that VEGFR­1 blockade reduced myeloid progenitor mobilization and monocyte/macrophage cell infiltration of tumor grafts in vivo. Since poly(ADP­ribose) polymerase (PARP)­1 exerts a pro­inflammatory role favoring monocyte activation, in the present study we investigated whether the PARP inhibitor (PARPi) olaparib hampers PlGF­induced activation of human myelomonocytic cells. HL­60 cells induced to differentiate towards the monocytic/macrophage lineage were tested and the results were confirmed in freshly isolated monocytes obtained from healthy donors. Cells were treated with olaparib, at clinically achievable concentrations, before exposure to PlGF and were analyzed for migration and ECM invasion in response to PlGF. Olaparib effects were compared to those obtained with D16F7 mAb used as single agent or in combination with the PARPi. The results indicate that differentiated HL­60 cells and monocytes expressed VEGFR­1 and migrated in response to PlGF. Moreover, olaparib and D16F7 inhibited PlGF­induced chemotaxis and ECM invasion in a dose­dependent manner and with similar efficacy. However, in combination studies the PARPi and D16F7 did not exert synergistic effects. Olaparib also hampered PlGF­induced monocyte adhesion to fibronectin, while it did not affect NF­κB activation in response to the angiogenic factor. These data suggest that olaparib likely interferes with the same pathway affected by the anti­VEGFR­1 mAb and that inhibition of PlGF-induced monocyte activation may contribute to PARPi antitumor activity.


Asunto(s)
Monocitos/citología , Células Mieloides/citología , Ftalazinas/farmacología , Piperazinas/farmacología , Factor de Crecimiento Placentario/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Anticuerpos Monoclonales/farmacología , Apoptosis , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células HL-60 , Humanos , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Células Mieloides/efectos de los fármacos , Células Mieloides/metabolismo , FN-kappa B , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo
9.
J Pharmacol Exp Ther ; 364(1): 77-86, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29025978

RESUMEN

The vascular endothelial growth factor (VEGF) receptor-1 (VEGFR-1) is a tyrosine kinase receptor that does not play a relevant role in physiologic angiogenesis in adults, whereas it is important in tumor angiogenesis. In high-grade glioma VEGFR-1 expression by tumor endothelium and neoplastic cells contributes to the aggressive phenotype. We recently generated an anti-VEGFR-1 monoclonal antibody (D16F7 mAb) characterized by a novel mechanism of action, since it hampers receptor activation without interfering with ligand binding. The mAb is able to inhibit chemotaxis and extracellular matrix invasion of glioma cells in vitro stimulated by VEGF-A and by the VEGFR-1-selective ligand placental growth factor (PlGF). In this study, we have investigated the influence of D16F7 on glioma growth and angiogenesis in vivo using C6 glioma cells transfected with the human VEGFR-1. D16F7 was able to inhibit receptor activation and migration and extracellular matrix invasion of C6 cells overexpressing the receptor in response to PlGF and VEGF-A. In nude mice, treatment with 10 and 20 mg/kg D16F7 as a single agent was well tolerated and significantly inhibited glioma growth (P < 0.001). Strikingly, in an intracranial orthotopic model, mice dosed with 20 mg/kg D16F7 demonstrated a 65% increase in median survival time compared with vehicle-treated controls (P < 0.001) with a high percentage of long-term survivors (46%). These effects were associated with glioma cell apoptosis and decreased tumor-associated vessel formation. Overall, these results highlight the therapeutic potential of D16F7 in glioma treatment, deserving further investigation after a humanization process as single agent or in combination therapies.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Anticuerpos Monoclonales/farmacología , Proliferación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Glioma/metabolismo , Glioma/patología , Humanos , Masculino , Ratones , Ratones Desnudos , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Factor de Crecimiento Placentario/metabolismo , Ratas , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Oncotarget ; 8(35): 57991-58002, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28938532

RESUMEN

The Growth Differentiation Factor 11 (GDF11) has been controversially involved in the aging/rejuvenation process. To clarify whether GDF11 is differently expressed during aging, we have evaluated GDF11 levels in skeletal muscles and hippocampi of young and old mice, sedentary or subjected to a 12-weeks triweekly training protocol. The results of real-time PCR and Western blot analyses indicate that skeletal muscles of sedentary old mice express higher levels of GDF11 compared to young animals (p < 0.05). Conversely, in hippocampi no significant differences of GDF11 expression are detected. Analysis of long-term potentiation, a synaptic plasticity phenomenon, reveals that population spikes in response to a tetanic stimulus are significantly higher in sedentary young mice than in old animals (p < 0.01). Training induces a significant improvement of long-term potentiation in both young and old animals (p < 0.05), an increase (p < 0.05) of skeletal muscle GDF11 levels in young mice and a reduction of GDF11 expression in hippocampi of old mice (p < 0.05). Overall, data suggest that GDF11 can be considered an aging biomarker for skeletal muscles. Moreover, physical exercise has a positive impact on long-term potentiation in both young and old mice, while it has variable effects on GDF11 expression depending on age and on the tissue analyzed.

11.
J Exp Clin Cancer Res ; 36(1): 106, 2017 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-28797294

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a highly migratory, invasive, and angiogenic brain tumor. Like vascular endothelial growth factor-A (VEGF-A), placental growth factor (PlGF) promotes GBM angiogenesis. VEGF-A is a ligand for both VEGF receptor-1 (VEGFR-1) and VEGFR-2, while PlGF interacts exclusively with VEGFR-1. We recently generated the novel anti-VEGFR-1 monoclonal antibody (mAb) D16F7 that diminishes VEGFR-1 homodimerization/activation without affecting VEGF-A and PlGF binding. METHODS: In the present study, we evaluated the expression of VEGFR-1 in human GBM tissue samples (n = 42) by immunohistochemistry, in cell lines (n = 6) and GBM stem cells (GSCs) (n = 18) by qRT-PCR and/or western blot analysis. In VEGFR-1 positive GBM or GSCs we also analyzed the ability of D16F7 to inhibit GBM invasiveness in response to VEGF-A and PlGF. RESULTS: Most of GBM specimens stained positively for VEGFR-1 and all but one GBM cell lines expressed VEGFR-1. On the other hand, in GSCs the expression of the receptor was heterogeneous. D16F7 reduced migration and invasion of VEGFR-1 positive GBM cell lines and patient-derived GSCs in response to VEGF-A and PlGF. Interestingly, this effect was also observed in VEGFR-1 positive GSCs transfected to over-express wild-type EGFR (EGFRwt+) or mutant EGFR (ligand binding domain-deficient EGFRvIII+). Furthermore, D16F7 suppressed intracellular signal transduction in VEGFR-1 over-expressing GBM cells by reducing receptor auto-phosphorylation at tyrosine 1213 and downstream Erk1/2 activation induced by receptor ligands. CONCLUSION: The results from this study suggest that VEGFR-1 is a relevant target for GBM therapy and that D16F7-derived humanized mAbs warrant further investigation.


Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Glioblastoma/tratamiento farmacológico , Factor de Crecimiento Placentario/genética , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Adulto , Anciano , Anticuerpos Monoclonales/inmunología , Femenino , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , Glioblastoma/inmunología , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/inmunología , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/inmunología , Neovascularización Patológica/patología , Fosforilación/efectos de los fármacos , Factor de Crecimiento Placentario/inmunología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/inmunología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/inmunología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética
12.
Curr Cancer Drug Targets ; 17(3): 267-281, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-27528361

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM) is the most common brain tumor in adults and is associated with a very low survival rate. The heterogeneity of the tumor microenvironment, its resistance to drug and radiation therapy, and its robust invasiveness all contribute to the poor outcome. Large numbers of glioma associated microglia and macrophages (GAMs) can accumulate within the tumor where they appear to have an important role in prognosis. METHODS: An extensive revision of current available literature on this topic has been carried out, using the PubMed database. Articles exploring the contribution of GAMs to GBM biology as well as evidence that GAMs can be pharmacologically modulated to inhibit tumor growth are critically discussed in this review article. RESULTS: GAMs constitute the largest portion of tumor infiltrating cells contributing up to 30% of the entire glioma mass. Upon interaction with neoplastic cells, GAMs acquire a unique phenotype of activation including both M1 and M2 specific markers. Different profiles of activation usually co-exist in the same tumor that is dependent upon GAM location or stage of disease. In addition to regulating immune responses which may control or favor astrocyte malignant transformation, GAMs are directly involved in the degradation of the extracellular matrix (ECM), a crucial mechanism that allows the expansion of tumors and parenchyma invasion. Several pharmacological strategies have been developed which interfere with GAM recruitment at the tumor site, cell polarization and immune function, and ECM remodeling by GAM-secreted factors. The most promising therapeutic approaches appear to target both GBM cells and GAM biological properties. CONCLUSION: GAMs significantly contribute to GBM biology (favoring tumor growth and invasiveness). Data reviewed in the present article suggest that these cells represent a valuable alternative/ additional target for the development of more effective treatments for GBM.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias Encefálicas/patología , Glioblastoma/patología , Microglía/patología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Humanos , Activación de Macrófagos/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/patología , Microglía/metabolismo , Microambiente Tumoral
13.
Nutrients ; 8(11)2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27879653

RESUMEN

Ellagic acid (EA) is a polyphenolic compound that can be found as a naturally occurring hydrolysis product of ellagitannins in pomegranates, berries, grapes, green tea and nuts. Previous studies have reported the antitumor properties of EA mainly using in vitro models. No data are available about EA influence on bladder cancer cell invasion of the extracellular matrix triggered by vascular endothelial growth factor-A (VEGF-A), an angiogenic factor associated with disease progression and recurrence, and tumor growth in vivo. In this study, we have investigated EA activity against four different human bladder cancer cell lines (i.e., T24, UM-UC-3, 5637 and HT-1376) by in vitro proliferation tests (measuring metabolic and foci forming activity), invasion and chemotactic assays in response to VEGF-A and in vivo preclinical models in nude mice. Results indicate that EA exerts anti-proliferative effects as a single agent and enhances the antitumor activity of mitomycin C, which is commonly used for the treatment of bladder cancer. EA also inhibits tumor invasion and chemotaxis, specifically induced by VEGF-A, and reduces VEGFR-2 expression. Moreover, EA down-regulates the expression of programmed cell death ligand 1 (PD-L1), an immune checkpoint involved in immune escape. EA in vitro activity was confirmed by the results of in vivo studies showing a significant reduction of the growth rate, infiltrative behavior and tumor-associated angiogenesis of human bladder cancer xenografts. In conclusion, these results suggest that EA may have a potential role as an adjunct therapy for bladder cancer.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ácido Elágico/farmacología , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Humanos , Concentración 50 Inhibidora , Masculino , Ratones Desnudos , Mitomicina/farmacología , Invasividad Neoplásica , Neovascularización Patológica , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Carga Tumoral/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/irrigación sanguínea , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Factor A de Crecimiento Endotelial Vascular/farmacología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/efectos de los fármacos , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
Oncotarget ; 7(45): 72868-72885, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27655684

RESUMEN

Vascular endothelial growth factor receptor-1 (VEGFR-1) is a tyrosine kinase transmembrane receptor that has also a soluble isoform containing most of the extracellular ligand binding domain (sVEGFR-1). VEGF-A binds to both VEGFR-2 and VEGFR-1, whereas placenta growth factor (PlGF) interacts exclusively with VEGFR-1. In this study we generated an anti-VEGFR-1 mAb (D16F7) by immunizing BALB/C mice with a peptide that we had previously reported to inhibit angiogenesis and endothelial cell migration induced by PlGF. D16F7 did not affect binding of VEGF-A or PlGF to VEGFR-1, thus allowing sVEGFR-1 to act as decoy receptor for these growth factors, but it hampered receptor homodimerization and activation. D16F7 inhibited both the chemotactic response of human endothelial, myelomonocytic and melanoma cells to VEGFR-1 ligands and vasculogenic mimicry by tumor cells. Moreover, D16F7 exerted in vivo antiangiogenic effects in a matrigel plug assay. Importantly, D16F7 inhibited tumor growth and was well tolerated by B6D2F1 mice injected with syngeneic B16F10 melanoma cells. The antitumor effect was associated with melanoma cell apoptosis, vascular abnormalities and decrease of both monocyte/macrophage infiltration and myeloid progenitor mobilization. For all the above, D16F7 may be exploited in the therapy of metastatic melanoma and other tumors or pathological conditions involving VEGFR-1 activation.


Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Inhibidores de la Angiogénesis/farmacología , Antineoplásicos Inmunológicos/metabolismo , Antineoplásicos Inmunológicos/farmacología , Receptor 1 de Factores de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Ligandos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Melanoma Experimental , Proteínas de la Membrana/farmacología , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Fosforilación , Unión Proteica , Multimerización de Proteína , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 1 de Factores de Crecimiento Endotelial Vascular/química
15.
Biochem Pharmacol ; 95(1): 16-27, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25795251

RESUMEN

Recovery of mitogen activated protein kinase (MAPK) or activation of alternative pathways, such as the PI3K/AKT/mTOR, are involved in acquired resistance to BRAF inhibitors which represent the first-line treatment of BRAF-mutated metastatic melanoma. We recently demonstrated that 6-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)hexan-1-ol (NBDHEX) and its water soluble analog 2-(2-(2-((7-nitrobenzo[c][1,2,5]oxadiazol-4-yl)thio)ethoxy)ethoxy)ethanol (MC3181) trigger apoptosis in BRAF V600E mutated melanoma cells through activation of the MAPK c-Jun N-terminal kinase (JNK). Herein, we investigated whether NBDHEX and MC3181 might exert antitumor activity against BRAF V600E mutated human melanoma cells rendered resistant to the BRAF inhibitor vemurafenib. To this aim we generated a subline of A375 melanoma resistant in vitro and in vivo to vemurafenib (A375-VR8) and characterized by NRAS G13R mutation, high basal levels of CRAF protein and phospho-activation of AKT. In these cells ERK phosphorylation was not significantly down-modulated by vemurafenib concentrations capable of abrogating ERK phosphorylation in sensitive A375 cells. Both NBDHEX and MC3181 induced marked antiproliferative and apoptotic effects in A375-VR8 cells and, at equitoxic concentrations, caused a strong phosphorylation of JNK, p38, and of the downstream mediators of apoptosis ATF2 and p53. Drug treatment further increased ERK phosphorylation, which was required for the cellular response to the NBD derivatives, as apoptosis was antagonized by the ERK inhibitor FR180204. Finally, in vivo administration of MC3181 provoked JNK activation at the tumor site and markedly reduced A375-VR8 growth. These evidences strongly suggest that the activation of multiple pro-apoptotic MAPK pathways by MC3181 might represent a new strategy for the treatment of melanoma resistant to BRAF inhibitors.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Indoles/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Sulfonamidas/farmacología , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Relación Dosis-Respuesta a Droga , Resistencia a Antineoplásicos/fisiología , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Humanos , Indoles/uso terapéutico , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Melanoma/tratamiento farmacológico , Melanoma/metabolismo , Ratones , Ratones Desnudos , Oxadiazoles/farmacología , Oxadiazoles/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/metabolismo , Solubilidad , Sulfonamidas/uso terapéutico , Vemurafenib , Agua/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
16.
Int J Cancer ; 136(6): E545-58, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25284767

RESUMEN

During melanoma progression, tumour cells show increased adhesiveness to the vascular wall, invade the extracellular matrix (ECM) and frequently form functional channels similar to vascular vessels (vasculogenic mimicry). These properties are mainly mediated by the interaction of integrins with ECM components. Since we had previously identified neuropilin 1 (NRP-1), a coreceptor of vascular endothelial growth factor A (VEGF-A), as an important determinant of melanoma aggressiveness, aims of this study were to identify the specific integrins involved in the highly invasive phenotype of NRP-1 expressing cells and to investigate their role as targets to counteract melanoma progression. Melanoma aggressiveness was evaluated in vitro as cell ability to migrate through an ECM layer and to form tubule-like structures using transfected cells. Integrins relevant to these processes were identified using specific blocking antibodies. The αvß5 integrin was found to be responsible for about 80% of the capability of NRP-1 expressing cells to adhere on vitronectin. In these cells αvß5 expression level was twice higher than in low-invasive control cells and contributed to the ability of melanoma cells to form tubule-like structures on matrigel. Cilengitide, a potent inhibitor of αν integrins activation, reduced ECM invasion, vasculogenic mimicry and secretion of VEGF-A and metalloproteinase 9 by melanoma cells. In conclusion, we demonstrated that ανß5 integrin is involved in the highly aggressive phenotype of melanoma cells expressing NRP-1. Moreover, we identified a novel mechanism that contributes to the antimelanoma activity of the αv integrin inhibitor cilengitide based on the inhibition of vasculogenic mimicry.


Asunto(s)
Melanoma/tratamiento farmacológico , Neuropilina-1/fisiología , Receptores de Vitronectina/antagonistas & inhibidores , Venenos de Serpiente/farmacología , Línea Celular Tumoral , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Melanoma/química , Melanoma/patología , Invasividad Neoplásica , Neuropilina-1/análisis , Receptores de Vitronectina/fisiología , Receptor 2 de Factores de Crecimiento Endotelial Vascular/análisis
17.
J Exp Clin Cancer Res ; 33: 71, 2014 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-25227992

RESUMEN

BACKGROUND: DNA topoisomerases are key enzymes that modulate the topological state of DNA through the breaking and rejoining of DNA strands. Human topoisomerase I belongs to the family of poly(ADP-ribose)-binding proteins and is the target of camptothecin derived anticancer drugs. Poly(ADP-ribosyl)ation occurs at specific sites of the enzyme inhibiting the cleavage and enhancing the religation steps during the catalytic cycle. Thus, ADP-ribose polymers antagonize the activity of topoisomerase I poisons, whereas PARP inhibitors increase their antitumor effects. METHODS: Using site-directed mutagenesis we have analyzed the interaction of human topoisomerase I and poly(ADP-ribose) through enzymatic activity and binding procedures. RESULTS: Mutations of the human topoisomerase I hydrophobic or charged residues, located on the putative polymer binding sites, are not sufficient to abolish or reduce the binding of the poly(ADP-ribose) to the protein. These results suggest either the presence of additional binding sites or that the mutations are not enough perturbative to destroy the poly(ADP-ribose) interaction, although in one mutant they fully abolish the enzyme activity. CONCLUSIONS: It can be concluded that mutations at the hydrophobic or charged residues of the putative polymer binding sites do not interfere with the ability of poly(ADP-ribose) to antagonize the antitumor activity of topoisomerase I poisons.


Asunto(s)
Sitios de Unión , ADN-Topoisomerasas de Tipo I/genética , Mutación , Dominios y Motivos de Interacción de Proteínas , Secuencia de Aminoácidos , Antineoplásicos Fitogénicos/farmacología , Camptotecina/farmacología , ADN-Topoisomerasas de Tipo I/química , ADN-Topoisomerasas de Tipo I/metabolismo , Activación Enzimática , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Poli Adenosina Difosfato Ribosa/metabolismo , Unión Proteica , Conformación Proteica , Inhibidores de Topoisomerasa I/farmacología
18.
BMC Cancer ; 14: 151, 2014 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-24593254

RESUMEN

BACKGROUND: Chemoresistance of glioblastoma multiforme (GBM) has been attributed to the presence within the tumor of cancer stem cells (GSCs). The standard therapy for GBM consists of surgery followed by radiotherapy and the chemotherapeutic agent temozolomide (TMZ). However, TMZ efficacy is limited by O6-methylguanine-DNA-methyltransferase (MGMT) and Mismatch Repair (MMR) functions. Strategies to counteract TMZ resistance include its combination with poly(ADP-ribose) polymerase inhibitors (PARPi), which hamper the repair of N-methylpurines. PARPi are also investigated as monotherapy for tumors with deficiency of homologous recombination (HR). We have investigated whether PARPi may restore GSC sensitivity to TMZ or may be effective as monotherapy. METHODS: Ten human GSC lines were assayed for MMR proteins, MGMT and PARP-1 expression/activity, MGMT promoter methylation and sensitivity to TMZ or PARPi, alone and in combination. Since PTEN defects are frequently detected in GBM and may cause HR dysfunction, PTEN expression was also analyzed. The statistical analysis of the differences in drug sensitivity among the cell lines was performed using the ANOVA and Bonferroni's post-test or the non-parametric Kruskal-Wallis analysis and Dunn's post-test for multiple comparisons. Synergism between TMZ and PARPi was analyzed by the median-effect method of Chou and Talalay. Correlation analyses were done using the Spearman's rank test. RESULTS: All GSCs were MMR-proficient and resistance to TMZ was mainly associated with high MGMT activity or low proliferation rate. MGMT promoter hypermethylation of GSCs correlated both with low MGMT activity/expression (Spearman's test, P = 0.004 and P = 0.01) and with longer overall survival of GBM patients (P = 0.02). Sensitivity of each GSC line to PARPi as single agent did not correlate with PARP-1 or PTEN expression. Notably, PARPi and TMZ combination exerted synergistic antitumor effects in eight out of ten GSC lines and the TMZ dose reduction achieved significantly correlated with the sensitivity of each cell line to PARPi as single agent (P = 0.01). CONCLUSIONS: The combination of TMZ with PARPi may represent a valuable strategy to reverse GSC chemoresistance.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Dacarbazina/análogos & derivados , Resistencia a Antineoplásicos , Glioblastoma/metabolismo , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Línea Celular Tumoral , Islas de CpG , Metilación de ADN , Dacarbazina/farmacología , Glioblastoma/genética , Glioblastoma/mortalidad , Humanos , O(6)-Metilguanina-ADN Metiltransferasa/genética , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/metabolismo , Regiones Promotoras Genéticas , Temozolomida
20.
Trends Pharmacol Sci ; 34(12): 656-66, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24210882

RESUMEN

Melanoma is the most aggressive form of skin cancer and, if spread outside the epidermis, has a dismal prognosis. Before the approval of the anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) monoclonal antibody ipilimumab and the BRAF inhibitors vemurafenib and dabrafenib, no other agents had demonstrated better results in terms of overall survival than the DNA-methylating compound dacarbazine (or its oral analog temozolomide). However, most patients with metastatic melanoma do not obtain long-lasting clinical benefit from ipilimumab and responses to BRAF inhibitors are short lived. Thus, combination therapies with inhibitors of DNA repair (e.g., poly(ADP-ribose) polymerase [PARP] inhibitors), novel immunomodulators (monoclonal antibodies against programmed death-1 [PD-1] or its ligand PD-L1), targeted therapies (mitogen-activated protein kinase [MAPK]/extracellular signal-regulated kinase [ERK] kinase [MEK] or phosphatidylinositol 3-kinase [PI3K]/AKT/mammalian target of rapamycin [mTOR] inhibitors) or antiangiogenic agents are currently being investigated to improve the efficacy of antimelanoma therapies. This review discusses the implications of simultaneously targeting key regulators of melanoma cell proliferation/survival and immune responses to counteract resistance.


Asunto(s)
Melanoma/tratamiento farmacológico , Melanoma/patología , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Anticuerpos Monoclonales/farmacología , Resistencia a Antineoplásicos , Humanos , Imidazoles/farmacología , Indoles/farmacología , Ipilimumab , Metástasis de la Neoplasia , Oximas/farmacología , Sulfonamidas/farmacología , Vemurafenib
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...