Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 16: 933874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106013

RESUMEN

While current research highlights the role of Nav1. 8 sensory neurons from the peripheral nervous system, the anatomical and physiological characterization of encephalic Nav1.8 neurons remains unknown. Here, we use a Cre/fluorescent reporter mouse driven by the Nav1.8 gene promoter to reveal unexpected subpopulations of transiently-expressing Nav1.8 neurons within the limbic circuitry, a key mediator of the emotional component of pain. We observed that Nav1.8 neurons from the bed nuclei of the stria terminalis (BST), amygdala, and the periaqueductal gray (vPAG) are sensitive to noxious stimuli from an experimental model of chronic inflammatory pain. These findings identify a novel role for central Nav1.8 neurons in sensing nociception, which could be researched as a new approach to treating pain disorders.

2.
Sci Rep ; 10(1): 4566, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32165725

RESUMEN

Peripheral biomarker and post-mortem brains studies have shown alterations of neuronal calcium sensor 1 (Ncs-1) expression in people with bipolar disorder or schizophrenia. However, its engagement by psychiatric medications and potential contribution to behavioral regulation remains elusive. We investigated the effect on Ncs-1 expression of valproic acid (VPA), a mood stabilizer used for the management of bipolar disorder. Treatment with VPA induced Ncs-1 gene expression in cell line while chronic administration of this drug to mice increased both Ncs-1 protein and mRNA levels in the mouse frontal cortex. Inhibition of histone deacetylases (HDACs), a known biochemical effect of VPA, did not alter the expression of Ncs-1. In contrast, pharmacological inhibition or genetic downregulation of glycogen synthase kinase 3ß (Gsk3ß) increased Ncs-1 expression, whereas overexpression of a constitutively active Gsk3ß had the opposite effect. Moreover, adeno-associated virus-mediated Ncs-1 overexpression in mouse frontal cortex caused responses similar to those elicited by VPA or lithium in tests evaluating social and mood-related behaviors. These findings indicate that VPA increases frontal cortex Ncs-1 gene expression as a result of Gsk3 inhibition. Furthermore, behavioral changes induced by Ncs-1 overexpression support a contribution of this mechanism in the regulation of behavior by VPA and potentially other psychoactive medications inhibiting Gsk3 activity.


Asunto(s)
Ansiedad/inducido químicamente , Lóbulo Frontal/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Proteínas Sensoras del Calcio Neuronal/genética , Proteínas Sensoras del Calcio Neuronal/metabolismo , Neuropéptidos/genética , Neuropéptidos/metabolismo , Ácido Valproico/efectos adversos , Animales , Ansiedad/genética , Ansiedad/metabolismo , Línea Celular , Modelos Animales de Enfermedad , Regulación hacia Abajo , Glucógeno Sintasa Quinasa 3 beta/genética , Células HEK293 , Humanos , Masculino , Ratones , Células PC12 , Ratas , Conducta Social , Regulación hacia Arriba , Ácido Valproico/administración & dosificación
3.
Front Cell Neurosci ; 13: 306, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354431

RESUMEN

The incoming signals from injured sensory neurons upon peripheral inflammation are processed in the dorsal horn of spinal cord, where glial cells accumulate and play a critical role in initiating allodynia (increased pain in response to light-touch). However, how painful stimuli in the periphery engage glial reactivity in the spinal cord remains unclear. Here, we found that a hind paw inflammation induced by CFA produces robust morphological changes in spinal astrocytes and microglia compatible with the reactive phenotype. Strikingly, we discovered that a single intrathecal injection with venom peptides that inhibit calcium channels reversed all the glial pathological features of the peripheral inflammation. These effects were more apparent in rats treated with the Phα1ß spider toxin (non-specific calcium channel antagonist) than ω-MVIIA cone snail toxin (selective N-type calcium channel antagonist). These data reveal for the first time a venom peptide acting on glial structural remodeling in vivo. We, therefore, suggest that calcium-dependent plasticity is an essential trigger for glial cells to initiate reactivity, which may represent a new target for the antinociceptive effects of Phα1ß and ω-MVIIA toxins in inflammatory pain conditions.

4.
J Neurosci ; 39(17): 3234-3248, 2019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-30782975

RESUMEN

Neuromodulation of deep brain structures (deep brain stimulation) is the current surgical procedure for treatment of Parkinson's disease (PD). Less studied is the stimulation of cortical motor areas to treat PD symptoms, although also known to alleviate motor disturbances in PD. We were able to show that optogenetic activation of secondary (M2) motor cortex improves motor functions in dopamine-depleted male mice. The stimulated M2 cortex harbors glutamatergic pyramidal neurons that project to subcortical structures, critically involved in motor control, and makes synaptic contacts with dopaminergic neurons. Strikingly, optogenetic activation of M2 neurons or axons into the dorsomedial striatum increases striatal levels of dopamine and evokes locomotor activity. We found that dopamine neurotransmission sensitizes the locomotor behavior elicited by activation of M2 neurons. Furthermore, combination of intranigral infusion of glutamatergic antagonists and circuit specific optogenetic stimulation revealed that behavioral response depended on the activity of M2 neurons projecting to SNc. Interestingly, repeated M2 stimulation combined with l-DOPA treatment produced an unanticipated improvement in working memory performance, which was absent in control mice under l-DOPA treatment only. Therefore, the M2-basal ganglia circuit is critical for the assembly of the motor and cognitive function, and this study demonstrates a therapeutic mechanism for cortical stimulation in PD that involves recruitment of long-range glutamatergic projection neurons.SIGNIFICANCE STATEMENT Some patients with Parkinson's disease are offered treatment through surgery, which consists of delivering electrical current to regions deep within the brain. This study shows that stimulation of an area located on the brain surface, known as the secondary motor cortex, can also reverse movement disorders in mice. Authors have used a brain stimulation technique called optogenetics, which allowed targeting a specific type of surface neuron that communicates with the deep part of the brain involved in movement control. The study also shows that a combination of this stimulation with drug treatment might be useful to treat memory impairment, a kind of cognitive problem in Parkinson's disease.


Asunto(s)
Corteza Motora/fisiopatología , Destreza Motora/fisiología , Enfermedad de Parkinson Secundaria/fisiopatología , Células Piramidales/fisiología , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Optogenética , Oxidopamina , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/terapia , Resultado del Tratamiento
5.
Bio Protoc ; 9(16): e3337, 2019 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33654842

RESUMEN

Parkinson's disease is a progressive neurodegenerative movement disorder that happens due to the loss of dopaminergic neurons in the substantia nigra. The deficiency of dopamine in the basal nuclei drives cardinal motor symptoms such as bradykinesia and hypokinesia. The current protocol describes the cylinder test, which is a relatively simple behavioral assessment that evaluates the motor deficits upon unilateral degeneration of the nigrostriatal pathway in experimental models of Parkinson's disease. Since dopamine-depleted mice exhibit the preferential use of the forelimb ipsilateral to the lesion, here researchers perform the cylinder test to investigate the therapeutic effects of antiparkinsonian treatments on the performance of the contralateral (injured) limb.

6.
J Vis Exp ; (139)2018 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-30295664

RESUMEN

Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique proposed as an alternative or complementary treatment for several neuropsychiatric diseases. The biological effects of tDCS are not fully understood, which is in part explained due to the difficulty in obtaining human brain tissue. This protocol describes a tDCS mouse model that uses a chronically implanted electrode allowing the study of the long-lasting biological effects of tDCS. In this experimental model, tDCS changes the cortical gene expression and offers a prominent contribution to the understanding of the rationale for its therapeutic use.


Asunto(s)
Encéfalo/fisiología , Electrodos Implantados , Estimulación Transcraneal de Corriente Directa/métodos , Animales , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...