Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Virol ; 91(17)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637753

RESUMEN

A detailed understanding of the fine specificity of serotype-specific human antibodies is vital for the development and evaluation of new vaccines for pathogenic flaviviruses such as dengue virus (DENV) and Zika virus. In this study, we thoroughly characterize the structural footprint of an anti-idiotype antibody (E1) specific for a potent, fully human DENV serotype 1-specific antibody, termed HM14c10, derived from a recovered patient. The crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 provides the first detailed molecular comparison of an anti-idiotype paratope specific for a human antibody with its analogous epitope, a discontinuous quaternary structure located at the surface of the viral particle that spans adjacent envelope (E) proteins. This comparison reveals that the footprints left by E1 and E on HM14c10 largely overlap, explaining why the formation of binary complexes is mutually exclusive. Structural mimicry of the DENV E epitope by the E1 combining site is achieved via the formation of numerous interactions with heavy chain complementarity domain regions (CDRs) of HM14c10, while fewer interactions are observed with its light chain than for the E protein. We show that E1 can be utilized to detect HM14c10-like antibodies in sera from patients who recovered from DENV-1, infection suggesting that this is a public (common) idiotype. These data demonstrate the utility of employing an anti-idiotype antibody to monitor a patient's specific immune responses and suggest routes for the improvement of E "mimicry" by E1 by increasing its recognition of the Fab HM14c10 light chain CDRs.IMPORTANCE A chimeric yellow fever-dengue live-attenuated tetravalent vaccine is now being marketed. Dengue remains a significant public health problem, because protection conferred by this vaccine against the four circulating serotypes is uneven. Reliable tools must be developed to measure the immune responses of individuals exposed to DENV either via viral infection or through vaccination. Anti-idiotypic antibodies provide precision tools for analyzing the pharmacokinetics of antibodies in an immune response and also for measuring the amount of circulating anti-infective therapeutic antibodies. Here, we characterize how an anti-idiotypic antibody (E1) binds antibody HM14c10, which potently neutralizes DENV serotype 1. We report the crystal structure at a resolution of 2.5 Å of a complex between the Fab fragments of E1 and HM14c10 and provide the first detailed molecular comparison between the anti-idiotype surface and its analogous epitope located at the surface of the dengue virus particle.

2.
J Virol ; 87(5): 2693-706, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23255803

RESUMEN

Dengue virus (DENV) is the principal arthropod-borne viral pathogen afflicting human populations. While repertoires of antibodies to DENV have been linked to protection or enhanced infection, the role of T lymphocytes in these processes remains poorly defined. This study provides a comprehensive overview of CD4(+) and CD8(+) T cell epitope reactivities against the DENV 2 proteome in adult patients experiencing secondary DENV infection. Dengue virus-specific T cell responses directed against an overlapping 15mer peptide library spanning the DENV 2 proteome were analyzed ex vivo by enzyme-linked immunosorbent spot assay, and recognition of individual peptides was further characterized in specific T cell lines. Thirty novel T cell epitopes were identified, 9 of which are CD4(+) and 21 are CD8(+) T cell epitopes. We observe that whereas CD8(+) T cell epitopes preferentially target nonstructural proteins (NS3 and NS5), CD4(+) epitopes are skewed toward recognition of viral components that are also targeted by B lymphocytes (envelope, capsid, and NS1). Consistently, a large proportion of dengue virus-specific CD4(+) T cells have phenotypic characteristics of circulating follicular helper T cells (CXCR5 expression and production of interleukin-21 or gamma interferon), suggesting that they are interacting with B cells in vivo. This study shows that during a dengue virus infection, the protein targets of human CD4(+) and CD8(+) T cells are largely distinct, thus highlighting key differences in the immunodominance of DENV proteins for these two cell types. This has important implications for our understanding of how the two arms of the human adaptive immune system are differentially targeted and employed as part of our response to DENV infection.


Asunto(s)
Linfocitos B/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Virus del Dengue/inmunología , Dengue/inmunología , Epítopos de Linfocito T/inmunología , Adulto , Proteínas de la Cápside/inmunología , Células Cultivadas , Femenino , Humanos , Interferón gamma/biosíntesis , Interleucinas/biosíntesis , Masculino , Persona de Mediana Edad , Proteoma/inmunología , ARN Helicasas/inmunología , Receptores CXCR5/biosíntesis , Serina Endopeptidasas/inmunología , Proteínas del Envoltorio Viral/inmunología , Proteínas no Estructurales Virales/inmunología
3.
Sci Transl Med ; 4(139): 139ra83, 2012 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-22723463

RESUMEN

Dengue virus (DENV) is a mosquito-borne flavivirus that affects 2.5 billion people worldwide. There are four dengue serotypes (DENV1 to DENV4), and infection with one elicits lifelong immunity to that serotype but offers only transient protection against the other serotypes. Identification of the protective determinants of the human antibody response to DENV is a vital requirement for the design and evaluation of future preventative therapies and treatments. Here, we describe the isolation of a neutralizing antibody from a DENV1-infected patient. The human antibody 14c10 (HM14c10) binds specifically to DENV1. HM14c10 neutralizes the virus principally by blocking virus attachment; at higher concentrations, a post-attachment step can also be inhibited. In vivo studies show that the HM14c10 antibody has antiviral activity at picomolar concentrations. A 7 Å resolution cryoelectron microscopy map of Fab fragments of HM14c10 in a complex with DENV1 shows targeting of a discontinuous epitope that spans the adjacent surface of envelope protein dimers. As found previously, a human antibody specific for the related West Nile virus binds to a similar quaternary structure, suggesting that this could be an immunodominant epitope. These findings provide a structural and molecular context for durable, serotype-specific immunity to DENV infection.


Asunto(s)
Anticuerpos Neutralizantes/uso terapéutico , Antivirales/uso terapéutico , Virus del Dengue/efectos de los fármacos , Animales , Anticuerpos Neutralizantes/farmacología , Antivirales/farmacología , Microscopía por Crioelectrón , Dengue/tratamiento farmacológico , Virus del Dengue/inmunología , Virus del Dengue/ultraestructura , Epítopos/inmunología , Humanos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...