Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Inflammation ; 47(3): 958-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38227123

RESUMEN

Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1ß, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.


Asunto(s)
Benzamidas , Compuestos Bicíclicos con Puentes , Ratones Endogámicos C57BL , Agonistas Nicotínicos , Elastasa Pancreática , Enfisema Pulmonar , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/prevención & control , Ratones , Benzamidas/farmacología , Benzamidas/uso terapéutico , Masculino , Compuestos Bicíclicos con Puentes/farmacología , Compuestos Bicíclicos con Puentes/uso terapéutico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
2.
Sci Rep ; 13(1): 6938, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37117332

RESUMEN

Clinical studies demonstrate the impact of smoking on bone tissue fragility and higher incidence of fractures. However, it is not totally understood which physiological mechanisms could be involved in these events. Previously, we showed important changes in bone tissue components in experimental model of cigarette smoke (CS) exposure. CS exposure induces worsening in bone mineralization and a decrease in collagen type I deposition, leading to bone fragility. Considering that the majority of clinical studies described bone structural changes by radiographic images, in this study we performed analyses "in situ" using tissue samples from smokers, former smokers and non-smokers to better understand how the increase in inflammatory mediators induced by smoking exposure could interfere in bone cells activity leading bone structural changes. We observed increased levels of IL-1ß, IL-6 and TNF-α in bone tissue homogenates with a concomitant increase in osteoblast apoptosis in smokers and former smokers compared with non-smokers. Histological changes in both smokers and former smokers were characterized by reduction in collagen type I. Only in smokers, it was observed decrease in trabecular area, suggesting increased bone resorption and increase in collagen type V. These results showed that osteoblasts apoptosis in association with increased bone resorption leads bone structural changes in smokers.


Asunto(s)
Resorción Ósea , Colágeno Tipo I , Humanos , Matriz Ósea , Osteoblastos , Apoptosis , Fumar/efectos adversos
3.
Front Oncol ; 12: 1042766, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36452484

RESUMEN

Lung cancer still represents a global health problem, being the main type of tumor responsible for cancer deaths. In this context, the tumor microenvironment, and the extracellular matrix (ECM) pose as extremely relevant. Thus, this study aimed to explore the prognostic value of epithelial-to-mesenchymal transition (EMT), Wnt signaling, and ECM proteins expression in patients with non-small-cell lung carcinoma (NSCLC) with clinical stages I-IIIA. For that, we used 120 tissue sections from patients and evaluated the immunohistochemical, immunofluorescence, and transmission electron microscopy (TEM) to each of these markers. We also used in silico analysis to validate our data. We found a strong expression of E-cadherin and ß-catenin, which reflects the differential ECM invasion process. Therefore, we also noticed a strong expression of chondroitin sulfate (CS) and collagens III and V. This suggests that, after EMT, the basal membrane (BM) enhanced the motility of invasive cells. EMT proteins were directly associated with WNT5A, and collagens III and V, which suggests that the WNT pathway drives them. On the other hand, heparan sulfate (HS) was associated with WNT3A and SPARC, while WNT1 was associated with CS. Interestingly, the association between WNT1 and Col IV suggested negative feedback of WNT1 along the BM. In our cohort, WNT3A, WNT5A, heparan sulfate and SPARC played an important role in the Cox regression model, influencing the overall survival (OS) of patients, be it directly or indirectly, with the SPARC expression stratifying the OS into two groups: 97 months for high expression; and 65 for low expression. In conclusion, the present study identified a set of proteins that may play a significant role in predicting the prognosis of NSCLC patients with clinical stages I-IIIA.

4.
Sci Rep ; 12(1): 17922, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36289254

RESUMEN

Adult tendons are highly differentiated. In mature individuals, tendon healing after an injury occurs through fibrotic tissue formation. Understanding the intrinsic reparative properties of fetal tendons would help to understand the maturation tissue process and tendon tissue repair. The present study evaluated the evolution of histoarchitecture, cellularity and the distribution of collagens I, III and V in the posterior tibial tendon in human fetuses at different gestational ages. Morphological profiles were assessed in nine fresh spontaneously aborted fetuses (Group I: five fetuses aged between 22 and 28 weeks of gestation; Group II: four fetuses aged between 32 and 38 weeks of gestation), characterized by a combination of histology, fluorescence and immunohistochemistry. In Group I, the posterior tibial tendon showed statistically significant greater cellularity and presence of collagen III and V than in Group II tendon, which showed a predominance of collagenous I and a better organization of the extracellular matrix compared with Group I tendons. In addition, a statistically significant higher rate of CD90, a marker of mesenchymal cells, was found in Group I tendons. In fetuses with gestational age between 22 and 28 weeks, the posterior tibialis tendons showed a thin and disorganized fibrillar structure, with an increase in collagen III and V fibers and mesenchymal cells. In the posterior tibialis tendons of fetuses with gestational age between 32 and 38 weeks, the fibrillar structure was thicker with a statistically significant increase in type I collagen and decreased cellularity.


Asunto(s)
Colágeno Tipo I , Tendones , Adulto , Humanos , Lactante , Colágeno Tipo I/análisis , Tendones/patología , Matriz Extracelular/química , Colágeno/química , Feto
5.
Antioxidants (Basel) ; 11(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36290746

RESUMEN

This study investigated the efficacy of aerobic exercise training (AET) in the prevention of dyslipidemia, insulin resistance (IR), and atherogenesis induced by severe low-sodium (LS) diet. LDL receptor knockout (LDLR KO) mice were fed a low-sodium (LS) (0.15% NaCl) or normal-sodium (NS; 1.27% NaCl) diet, submitted to AET in a treadmill, 5 times/week, 60 min/day, 15 m/min, for 90 days, or kept sedentary. Blood pressure (BP), plasma total cholesterol (TC) and triglyceride (TG) concentrations, lipoprotein profile, and insulin sensitivity were evaluated at the end of the AET protocol. Lipid infiltration, angiotensin II type 1 receptor (AT1), receptor for advanced glycation end products (RAGE), carboxymethyllysine (CML), and 4-hydroxynonenal (4-HNE) contents as well as gene expression were determined in the brachiocephalic trunk. BP and TC and gene expression were similar among groups. Compared to the NS diet, the LS diet increased vascular lipid infiltration, CML, RAGE, 4-HNE, plasma TG, LDL-cholesterol, and VLDL-TG. Conversely, the LS diet reduced vascular AT1 receptor, insulin sensitivity, HDL-cholesterol, and HDL-TG. AET prevented arterial lipid infiltration; increases in CML, RAGE, and 4-HNE contents; and reduced AT1 levels and improved LS-induced peripheral IR. The current study showed that AET counteracted the deleterious effects of chronic LS diet in an atherogenesis-prone model by ameliorating peripheral IR, lipid infiltration, CML, RAGE, 4-HNE, and AT1 receptor in the intima-media of the brachiocephalic trunk. These events occurred independently of the amelioration of plasma-lipid profile, which was negatively affected by the severe dietary-sodium restriction.

6.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36293511

RESUMEN

Cutaneous fibrosis is one of the main features of systemic sclerosis (SSc). Recent findings correlated abnormal collagen V (Col V) deposition in dermis with skin thickening and disease activity in SSc. Considering that Col V is an important regulator of collagen fibrillogenesis, understanding the role of Col V in the first two years of the skin fibrosis in SSc (early SSc) can help to determine new targets for future treatments. In this study, we analyzed the morphological, ultrastructural and molecular features of α1(V) and α2(V) chains and the expression of their coding genes COL5A1 and COL5A2 in collagen fibrillogenesis in early-SSc. Skin biopsies were obtained from seven consecutive treatment-naïve patients with SSc-related fibrosis and four healthy controls. Our data showed increased α1(V) and α2(V) chain expression in the reticular dermis of early-SSc patients; however, immunofluorescence and ultrastructural immunogold staining determined a significant decreased expression of the α1(V) chain along the dermoepidermal junction in the papillary dermis from early-SSc-patients in relation to the control (12.77 ± 1.34 vs. 66.84 ± 3.36; p < 0.0001). The immunoblot confirmed the decreased expression of the α1(V) chain by the cutaneous fibroblasts of early-SSc, despite the increased COL5A1 and COL5A2 gene expression. In contrast, the α2(V) chain was overexpressed in the small vessels (63.18 ± 3.56 vs. 12.16 ± 0.81; p < 0.0001) and capillaries (60.88 ± 5.82 vs. 15.11 ± 3.80; p < 0.0001) in the reticular dermis of early-SSc patients. Furthermore, COLVA2 siRNA in SSc cutaneous fibroblasts resulted in a decreased α1(V) chain expression. These results highlight an intense decrease in the α1(V) chain along the dermoepidermal junction, suggesting an altered molecular histoarchitecture in the SSc papillary dermis, with a possible decrease in the expression of the α1(V)3 homotrimeric isoform, which could interfere with the thickening and cutaneous fibrosis related to SSc.


Asunto(s)
Dermis , Esclerodermia Sistémica , Humanos , ARN Interferente Pequeño/metabolismo , Estructura Molecular , Dermis/metabolismo , Esclerodermia Sistémica/patología , Fibrosis , Colágeno/metabolismo , Piel/metabolismo , Fibroblastos/metabolismo
7.
Physiol Rep ; 10(17): e15429, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36065867

RESUMEN

Optimal fluid management is critical during mechanical ventilation to mitigate lung damage. Under normovolemia and protective ventilation, pulmonary tensile stress during pressure-support ventilation (PSV) results in comparable lung protection to compressive stress during pressure-controlled ventilation (PCV) in experimental acute lung injury (ALI). It is not yet known whether tensile stress can lead to comparable protection to compressive stress in ALI under a liberal fluid strategy (LF). A conservative fluid strategy (CF) was compared with LF during PSV and PCV on lungs and kidneys in an established model of ALI. Twenty-eight male Wistar rats received endotoxin intratracheally. After 24 h, they were treated with CF (minimum volume of Ringer's lactate to maintain normovolemia and mean arterial pressure ≥70 mmHg) or LF (~4 times higher than CF) combined with PSV or PCV (VT  = 6 ml/kg, PEEP = 3 cmH2 O) for 1 h. Nonventilated animals (n = 4) were used for molecular biology analyses. CF-PSV compared with LF-PSV: (1) decreased the diffuse alveolar damage score (10 [7.8-12] vs. 25 [23-31.5], p = 0.006), mainly due to edema in axial and alveolar parenchyma; (2) increased birefringence for occludin and claudin-4 in lung tissue and expression of zonula-occludens-1 and metalloproteinase-9 in lung. LF compared with CF reduced neutrophil gelatinase-associated lipocalin and interleukin-6 expression in the kidneys in PSV and PCV. In conclusion, CF compared with LF combined with PSV yielded less lung epithelial cell damage in the current model of ALI. However, LF compared with CF resulted in less kidney injury markers, regardless of the ventilatory strategy.


Asunto(s)
Lesión Pulmonar Aguda , Lesión Pulmonar Aguda/terapia , Animales , Riñón , Pulmón , Masculino , Ratas , Ratas Wistar , Respiración Artificial/métodos , Volumen de Ventilación Pulmonar
8.
Antioxidants (Basel) ; 11(9)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36139764

RESUMEN

The formation of microthrombi in lung autopsies indicates the involvement of NETs in the immunopathogenesis of severe COVID-19. Therefore, supplements inhibiting NET formation, in association with drugs with fewer adverse effects, should be a relevant strategy to attenuate the disease. Resveratrol (RESV) is a natural polyphenol with an important antiviral and antioxidant role. To modulate neutrophils from patients infected with SARS-CoV-2, we evaluated the in vitro effect of RESV on NET formation. Herein, we investigated 190 patients hospitalized with moderate, severe, and critical symptoms at Hospital das Clínicas, Brazil. We observed that neutrophilia in patients with severe COVID-19 infection is composed of neutrophils with activated profile able to release NET spontaneously. Notably, RESV decreased the neutrophil-activated status and the release of free DNA, inhibiting NET formation even under the specific PMA stimulus. At present, there is no evidence of the role of RESV in neutrophils from patients with COVID-19 infection. These findings suggest that adjunctive therapies with RESV may help decrease the inflammation of viral or bacterial infection, improving patient outcomes.

9.
PLoS One ; 17(5): e0268434, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35609032

RESUMEN

The SARS-CoV-2 pandemic have been affecting millions of people worldwide, since the beginning of 2020. COVID-19 can cause a wide range of clinical symptoms, which varies from asymptomatic presentation to severe respiratory insufficiency, exacerbation of immune response, disseminated microthrombosis and multiple organ failure, which may lead to dead. Due to the rapid spread of SARS-CoV-2, the development of vaccines to minimize COVID-19 severity in the world population is imperious. One of the employed techniques to produce vaccines against emerging viruses is the synthesis of recombinant proteins, which can be used as immunizing agents. Based on the exposed, the aim of the present study was to verify the systemic and immunological effects of IM administration of recombinant Nucleocapsid protein (NP), derived from SARS-CoV-2 and produced by this research group, in 2 different strains of rats (Rattus norvegicus); Wistar and Lewis. For this purpose, experimental animals received 4 injections of NP, once a week, and were submitted to biochemical and histological analysis. Our results showed that NP inoculations were safe for the animals, which presented no clinical symptoms of worrying side effects, nor laboratorial alterations in the main biochemical and histological parameters, suggesting the absence of toxicity induced by NP. Moreover, NP injections successfully triggered the production of specific anti-SARS-CoV-2 IgG antibodies by both Wistar and Lewis rats, showing the sensitization to have been well sufficient for the immunization of these strains of rats. Additionally, we observed the local lung activation of the Bronchus-Associated Lymphoid Tissue (BALT) of rats in the NP groups, suggesting that NP elicits specific lung immune response. Although pre-clinical and clinical studies are still required, our data support the recombinant NP produced by this research group as a potential immunizing agent for massive vaccination, and may represent advantages upon other recombinant proteins, since it seems to induce specific pulmonary protection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Anticuerpos Antivirales , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunidad , Inmunización , Pulmón , Proteínas de la Nucleocápside , Ratas , Ratas Endogámicas Lew , Ratas Wistar , Proteínas Recombinantes , Glicoproteína de la Espiga del Coronavirus , Vacunación
10.
Front Med (Lausanne) ; 9: 871202, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35492318

RESUMEN

Background: Malignant pleural mesotheliomas (MM) are known for their heterogenous histology and clinical behavior. MM histology reveals three major tumor cell populations: epithelioid, sarcomatoid, and biphasic. Using a dissecting approach, we showed that histochemical gradients help us better understand tumor heterogeneity and reconsider its histologic classifications. We also showed that this method to characterize MM tumor cell populations provides a better understanding of the underlying mechanisms for invasion and disease progression. Methods: In a cohort of 87 patients with surgically excised MM, we used hematoxylin and eosin to characterize tumor cell populations and Movat's pentachrome staining to dissect the ECM matrisome. Next, we developed a computerized semi-assisted protocol to quantify and reconstruct the ECM in 3D and examined the clinical association between the matricellular factors and patient outcome. Results: Epithelioid cells had a higher matrix composition of elastin and fibrin, whereas, in the sarcomatoid type, hyaluronic acid and total collagen were most prevalent. The 3D reconstruction exposed the collagen I and III that form channels surrounding the neoplastic cell blocks. The estimated volume of the two collagen fractions was 14% of the total volume, consistent with the median estimated area of total collagen (12.05 mm2) for epithelioid MM. Conclusion: Differential patterns in matricellular phenotypes in MM could be used in translational studies to improve patient outcome. More importantly, our data raise the possibility that cancer cells can use the matrisome for disease expansion and could be effectively targeted by anti-collagen, anti-elastin, and/or anti-hyaluronic acid therapies.

11.
PLoS One ; 17(1): e0262532, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35085314

RESUMEN

This study aimed to report the effects of different doses of ionizing radiation on inflammatory and repair stage of human skin graft adherence in Nude mice wounds. Animals were divided into transplanted with irradiated human skin grafts (IHSG) at 25 and 50 kGy (IHSG 25 kGy; IHSG 50 kGy) and non-IHSG and euthanized on the 3rd, 7th and 21st days after the surgery, by gross and microscopic changes, immunostaining for human type I collagen (Col I) and mouse Col I and Col III and inflammatory cells. We found an effectiveness of human split-thickness graft adherence in mice transplanted with IHSG 25 kGy, as well decrease in dermo-epidermal necrosis and neutrophils, lower loss of skin thickness, epithelization and neo-vascularization. Day 21 post-transplantation with IHSG 25 kGy was observed a well-preserved human skin in the border of the graft, a prominent granulation tissue in an organization by proliferated fibroblasts, Col III deposition and increased B-cells and macrophages. A complete adherence of human skin graft occurred with IHSG 25 kGy. We suggest that the ionizing radiation at 25 kGy mediates inflammation and the repair stage of human skin graft adherence in murine model, thus emerging as a potential tool in healing cutaneous wounds.


Asunto(s)
Microambiente Celular/fisiología , Colágeno Tipo I/metabolismo , Piel/metabolismo , Piel/fisiopatología , Adherencias Tisulares/metabolismo , Adherencias Tisulares/fisiopatología , Cicatrización de Heridas/fisiología , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Repitelización/fisiología , Trasplante de Piel/métodos , Piel Artificial
12.
J Cachexia Sarcopenia Muscle ; 12(6): 1440-1455, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34666419

RESUMEN

BACKGROUND: Muscle atrophy and strength loss are common adverse outcomes following bariatric surgery. This randomized, controlled trial investigated the effects of exercise training on bariatric surgery-induced loss of muscle mass and function. Additionally, we investigated the effects of the intervention on molecular and histological mediators of muscle remodelling. METHODS: Eighty women with obesity were randomly assigned to a Roux-en-Y gastric bypass (RYGB: n = 40, age = 42 ± 8 years) or RYGB plus exercise training group (RYGB + ET: n = 40, age = 38 ± 7 years). Clinical and laboratory parameters were assessed at baseline, and 3 (POST3) and 9 months (POST9) after surgery. The 6 month, three-times-a-week, exercise intervention (resistance plus aerobic exercise) was initiated 3 months post-surgery (for RYGB + ET). A healthy, lean, age-matched control group was recruited to provide reference values for selected variables. RESULTS: Surgery resulted in a similar (P = 0.66) reduction in lower-limb muscle strength in RYGB and RYGB+ET (-26% vs. -31%), which was rescued to baseline values in RYGB + ET (P = 0.21 vs. baseline) but not in RYGB (P < 0.01 vs. baseline). Patients in RYGB+ET had greater absolute (214 vs. 120 kg, P < 0.01) and relative (2.4 vs. 1.4 kg/body mass, P < 0.01) muscle strength compared with RYGB alone at POST9. Exercise resulted in better performance in timed-up-and-go (6.3 vs. 7.1 s, P = 0.05) and timed-stand-test (18 vs. 14 repetitions, P < 0.01) compared with RYGB. Fat-free mass was lower (POST9-PRE) after RYBG than RYGB + ET (total: -7.9 vs. -4.9 kg, P < 0.01; lower-limb: -3.8 vs. -2.7 kg, P = 0.02). Surgery reduced Types I (~ - 21%; P = 0.99 between-group comparison) and II fibre cross-sectional areas (~ - 27%; P = 0.88 between-group comparison), which were rescued to baseline values in RYGB+ET (P > 0.05 vs. baseline) but not RYGB (P > 0.01 vs. baseline). RYGB + ET showed greater Type I (5187 vs. 3898 µm2 , P < 0.01) and Type II (5165 vs. 3565 µm2 , P < 0.01) fCSA than RYGB at POST9. RYGB + ET also resulted in increased capillarization (P < 0.01) and satellite cell content (P < 0.01) than RYGB at POST9. Gene-set normalized enrichment scores for the muscle transcriptome revealed that the ubiquitin-mediated proteolysis pathway was suppressed in RYGB + ET at POST9 vs. PRE (NES: -1.7; P < 0.01), but not in RYGB. Atrogin-1 gene expression was lower in RYGB + ET vs. RYGB at POST9 (0.18 vs. 0.71-fold change, P < 0.01). From both genotypic and phenotypic perspectives, the muscle of exercised patients resembled that of healthy lean individuals. CONCLUSIONS: This study provides compelling evidence-from gene to function-that strongly supports the incorporation of exercise into the recovery algorithm for bariatric patients so as to counteract the post-surgical loss of muscle mass and function.


Asunto(s)
Cirugía Bariátrica , Derivación Gástrica , Obesidad Mórbida , Adulto , Ejercicio Físico , Femenino , Derivación Gástrica/efectos adversos , Humanos , Persona de Mediana Edad , Músculos
13.
Front Immunol ; 12: 714230, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34484217

RESUMEN

Non-small cell lung carcinoma (NSCLC) is a complex cancer biome composed of malignant cells embedded in a sophisticated tumor microenvironment (TME) combined with different initiating cell types, including immune cells and cancer-associated fibroblasts (CAFs), and extracellular matrix (ECM) proteins. However, little is known about these tumors' immune-matricellular relationship as functional and mechanical barriers. This study investigated 120 patients with NSCLC to describe the immune-matricellular phenotypes of their TME and their relationship with malignant cells. Immunohistochemistry (IHC) was performed to characterize immune checkpoints (PD-L1, LAG-3, CTLA-4+, VISTA 1), T cells (CD3+), cytotoxic T cells (CD8+, Granzyme B), macrophages (CD68+), regulatory T cells (FOXP3+, CD4+), natural killer cells (CD57+), and B lymphocytes (CD20+), whereas CAFs and collagen types I, III, and V were characterized by immunofluorescence (IF). We observed two distinct functional immune-cellular barriers-the first of which showed proximity between malignant cells and cytotoxic T cells, and the second of which showed distant proximity between non-cohesive nests of malignant cells and regulatory T cells. We also identified three tumor-associated matricellular barriers: the first, with a localized increase in CAFs and a low deposition of Col V, the second with increased CAFs, Col III and Col I fibers, and the third with a high amount of Col fibers and CAFs bundled and aligned perpendicularly to the tumor border. The Cox regression analysis was designed in two steps. First, we investigated the relationship between the immune-matricellular components and tumor pathological stage (I, II, and IIIA), and better survival rates were seen in patients whose tumors expressed collagen type III > 24.89 fibers/mm². Then, we included patients who had progressed to pathological stage IV and found an association between poor survival and tumor VISTA 1 expression > 52.86 cells/mm² and CD3+ ≤ 278.5 cells/mm². We thus concluded that differential patterns in the distribution of immune-matricellular phenotypes in the TME of NSCLC patients could be used in translational studies to predict new treatment strategies and improve patient outcome. These data raise the possibility that proteins with mechanical barrier function in NSCLC may be used by cancer cells to protect them from immune cell infiltration and immune-mediated destruction, which can otherwise be targeted effectively with immunotherapy or collagen therapy.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Susceptibilidad a Enfermedades/inmunología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Progresión de la Enfermedad , Femenino , Regulación de la Expresión Génica , Humanos , Inmunohistoquímica , Estimación de Kaplan-Meier , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Estadificación de Neoplasias , Pronóstico
14.
Front Oncol ; 11: 706141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34458147

RESUMEN

Recently, collagen/integrin genes have shown promise as predictors of metastasis mainly in non-small cell lung cancer and breast cancer. However, it is unknown if these gene expression profiling differ in metastatic potential of pulmonary neuroendocrine neoplasms (PNENs). In this study, we sought to identify differentially expressed collagen/integrin genes in PNENs in order to understand the molecular mechanisms underlying the development of stroma-associated fibrosis for invasion and metastasis. We compared collagen/integrin gene expression profiling between PNE tumors (PNETs) and PNE carcinomas (PNECs) using a two-stage design. First, we used PCR Array System for 84 ECM-related genes, and among them, we found COL1A2, COL3A1, COL5A2, ITGA5, ITGAV, and ITGB1 functionally involved in the formation of the stroma-associated fibrosis among PNENs histological subtypes. Second, we examined the clinical association between the six collagen/integrin genes in tumor tissues from 24 patients with surgically excised PNENs. However, the pathological exam of their resected tissues demonstrated that 10 developed lymph node metastasis and 7 distant metastasis. We demonstrated and validated up regulation of the six fibrogenic genes in PNECs and down regulation in PNETs that were significantly associated with metastasis-free and overall survival (P<0.05). Our study implicates up regulation of fibrogenic genes as a critical molecular event leading to lymph node and distant metastasis in PNENs.

15.
Cells ; 10(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206428

RESUMEN

Th17/Treg imbalance plays a pivotal role in COPD development and progression. We aimed to assess Th17/Treg-related intracellular signaling at different COPD stages in local and systemic responses. Lung tissue and/or peripheral blood samples were collected and divided into non-obstructed (NOS), COPD stages I and II, and COPD stages III and IV groups. Gene expression of STAT3 and -5, RORγt, Foxp3, interleukin (IL)-6, -17, -10, and TGF-ß was assessed by RT-qPCR. IL-6, -17, -10, and TGF-ß levels were determined by ELISA. We observed increased STAT3, RORγt, Foxp3, IL-6, and TGF-ß gene expression and IL-6 levels in the lungs of COPD I and II patients compared to those of NOS patients. Regarding the systemic response, we observed increased STAT3, RORγt, IL-6, and TGF-ß gene expression in the COPD III and IV group and increased IL-6 levels in the COPD I and II group. STAT5 was increased in COPD III and IV patients, although there was a decrease in Foxp3 expression and IL-10 levels in the COPD I and II and COPD III and IV groups, respectively. We demonstrated that an increase in Th17 intracellular signaling in the lungs precedes this increase in the systemic response, whereas Treg intracellular signaling varies between the compartments analyzed in different COPD stages.


Asunto(s)
Espacio Intracelular/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Transducción de Señal , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Anciano , Citocinas/metabolismo , Femenino , Humanos , Pulmón/inmunología , Pulmón/patología , Masculino , Persona de Mediana Edad , Factores de Transcripción/metabolismo
16.
Redox Biol ; 44: 102016, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34038814

RESUMEN

Histidine-containing dipeptides (HCDs) are abundantly expressed in striated muscles. Although important properties have been ascribed to HCDs, including H+ buffering, regulation of Ca2+ transients and protection against oxidative stress, it remains unknown whether they play relevant functions in vivo. To investigate the in vivo roles of HCDs, we developed the first carnosine synthase knockout (CARNS1-/-) rat strain to investigate the impact of an absence of HCDs on skeletal and cardiac muscle function. Male wild-type (WT) and knockout rats (4 months-old) were used. Skeletal muscle function was assessed by an exercise tolerance test, contractile function in situ and muscle buffering capacity in vitro. Cardiac function was assessed in vivo by echocardiography and cardiac electrical activity by electrocardiography. Cardiomyocyte contractile function was assessed in isolated cardiomyocytes by measuring sarcomere contractility, along with the determination of Ca2+ transient. Markers of oxidative stress, mitochondrial function and expression of proteins were also evaluated in cardiac muscle. Animals were supplemented with carnosine (1.8% in drinking water for 12 weeks) in an attempt to rescue tissue HCDs levels and function. CARNS1-/- resulted in the complete absence of carnosine and anserine, but it did not affect exercise capacity, skeletal muscle force production, fatigability or buffering capacity in vitro, indicating that these are not essential for pH regulation and function in skeletal muscle. In cardiac muscle, however, CARNS1-/- resulted in a significant impairment of contractile function, which was confirmed both in vivo and ex vivo in isolated sarcomeres. Impaired systolic and diastolic dysfunction were accompanied by reduced intracellular Ca2+ peaks and slowed Ca2+ removal, but not by increased markers of oxidative stress or impaired mitochondrial respiration. No relevant increases in muscle carnosine content were observed after carnosine supplementation. Results show that a primary function of HCDs in cardiac muscle is the regulation of Ca2+ handling and excitation-contraction coupling.


Asunto(s)
Carnosina , Dipéptidos , Animales , Anserina , Histidina , Masculino , Músculo Esquelético , Miocitos Cardíacos , Ratas
18.
Front Cell Dev Biol ; 9: 606890, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33829012

RESUMEN

Collagen is essential for cartilage adhesion and formation. In the present study, histology, immunofluorescence, morphometry, and qRT-PCR suggested that adipose-derived stem cells (ADSCs) stimulated by type V collagen (Col V) induce a significant increase of type II collagen (Col II) in the degenerative area of surgical-induced osteoarthritic rabbit articular cartilage (OA). In vitro, the effects of Col V on the proliferation and differentiation of ADSC were investigated. The expression of the cartilage-related genes Col2a1 and Acan was significantly upregulated and Pou5fl was downregulated post-ADSC/Col V treatment. Post-ADSC/Col V treatment, in vivo analyses revealed that rabbits showed typical signs of osteoarthritic articular cartilage regeneration by hematoxylin and eosin (H&E) and Safranin O/Fast Green staining. Immunohistochemical staining demonstrated that the volume of Col II fibers and the expression of Col II protein were significantly increased, and apoptosis Fas ligand positive significantly decreased post-ADSC/Col V treatment. In conclusion, the expression of Col II was higher in rabbits with surgical-induced osteoarthritic articular cartilage; hence, ADSC/Col V may be a promising therapeutic target for OA treatment.

19.
Histol Histopathol ; 36(6): 663-674, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33755188

RESUMEN

A tendon is a mechanosensitive tissue that transmits muscle-derived forces to bones. Photobiomodulation (PBM), also known as low-level laser therapy (LLLT), has been used in therapeutic approaches in tendon lesions, but uncertainties regarding its mechanisms of action have prevented its widespread use. We investigated the response of PBM therapy in experimental lesions of the Achilles tendon in rats. Thirty adult male Wistar rats weighing 250 to 300 g were surgically submitted to bilateral partial transverse section of the Achilles tendon. The right tendon was treated with PBM, whereas the left tendon served as a control. On the third postoperative day, the rats were divided into three experimental groups consisting of ten rats each, which were treated with PBM (Konf, Aculas - HB 750), 780 nm and 80 mW for 20 seconds, three times/week for 7, 14 and 28 days. The rats were sacrificed at the end of the therapeutic time period. The Sca-1 was examined by immunohistochemistry and histomorphometry, and COLA1, COLA2 and COLA3 gene expression was examined by qRT-PCR. COLA2 gene expression was higher in PBM treated tendons than in the control group. The histomorphometric analysis coincided with increased number of mesenchymal cells, characterized by Sca-1 expression in the lesion region (p<0.001). PBM effectively interferes in tendon tissue repair after injury by stimulating mesenchymal cell proliferation and the synthesis of collagen type II, which is suggested to provide structural support to the interstitial tissues during the healing process of the Achilles tendon. Further studies are needed to confirm the role of PBM in tendon healing.


Asunto(s)
Colágeno/metabolismo , Terapia por Luz de Baja Intensidad , Traumatismos de los Tendones/terapia , Tendón Calcáneo/lesiones , Animales , Modelos Animales de Enfermedad , Ratas , Ratas Wistar , Cicatrización de Heridas
20.
Pathol Res Pract ; 220: 153382, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33647866

RESUMEN

OBJECTIVE: The pulmonary vascular remodeling in systemic sclerosis (SSc) is poorly understood and animal models are lacking. Type V collagen (COLV) is elevated in SSc and is implicated in the pathogenesis, and immunization with human COLV induces SSc-like skin and lung changes in rabbits and mice. Here we tested the hypothesis that COLV immunization will induce pathological and functional changes that phenocopy SSc-associated pulmonary vascular disease. METHODS: Pulmonary vascular changes in rabbits immunized with human COLV were extensively characterized by a combination of histology, electron microscopy and immunohistochemistry. Physiologic changes induced by COLV in explanted pulmonary artery rings were evaluated. The pattern of histopathologic alterations and gene expression induced in immunized rabbits were compared to those in SSc patients. RESULTS: COLV immunization was accompanied by striking pulmonary vascular abnormalities, characterized by reduced capillary density, perivascular inflammation, endothelial cell injury and collagen accumulation, that closely phenocopy changes seen in SSc patients. Moreover, pulmonary arteries from immunized rabbits showed impaired ex vivo vascular relaxation. Expression of COL5A2 was significantly increased in the lungs from immunized rabbits (p = 0.02), as well as in patients with SSc (P = 0.02). CONCLUSION: COLV immunity in rabbits is associated with marked vascular remodeling in the lung that phenocopies early-stage human SSc-associated pulmonary vascular disease. COLV immunization therefore represents a novel approach to model SSc pulmonary vascular pathology. Moreover, our findings suggest that COLV might represent a novel pathogenic autoantigen in SSc and future studies with the present model should be developed for possible association with PAH.


Asunto(s)
Colágeno Tipo V/inmunología , Pulmón/irrigación sanguínea , Arteria Pulmonar/patología , Esclerodermia Sistémica/patología , Remodelación Vascular , Adulto , Animales , Estudios de Casos y Controles , Colágeno Tipo V/metabolismo , Modelos Animales de Enfermedad , Femenino , Hemodinámica , Humanos , Persona de Mediana Edad , Arteria Pulmonar/inmunología , Arteria Pulmonar/metabolismo , Arteria Pulmonar/fisiopatología , Conejos , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/metabolismo , Esclerodermia Sistémica/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...