Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
bioRxiv ; 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38496556

RESUMEN

Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE: Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk.

2.
J Immigr Minor Health ; 26(2): 421-425, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37882970

RESUMEN

The COVID-19 pandemic exacerbated racism experienced by Asian Americans, especially women and older individuals. Little is known about how discriminatory experiences during the pandemic have influenced health behaviors among Asian Americans. Between 10/2021 and 6/2022, we surveyed 193 Asian American women in the San Francisco area. Participants were asked to report types of discrimination they experienced since March 2020. We explored bivariable associations of discrimination and changes in health behaviors and healthcare utilization. Most women were Chinese American (75%) and over 45-years-old (87%). The top three discriminatory experiences reported were being treated with less respect (60%), being treated unfairly at restaurants/stores (49%), and people acting as if they are better (47%). Chinese American women (vs. non-Chinese Asian American women) reported higher frequencies of being threatened/harassed (40% vs. 22%). Women who reported any discriminatory experience (vs. none) were more likely to report less physical exercise (42.7% vs. 26.3%) and canceling/rescheduling medical appointments (65.0% vs. 45.1%). Our findings begin to elucidate Asian American women's experiences of discrimination since the pandemic and provide evidence of the harmful impacts of anti-Asian racism on health behaviors.


Asunto(s)
COVID-19 , Racismo , Humanos , Femenino , Persona de Mediana Edad , Asiático , Pandemias , Conductas Relacionadas con la Salud , Ejercicio Físico
3.
PLoS Pathog ; 19(11): e1011771, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37934757

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and greater risks of other complications, including malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol(SH)-linked alkylation for the metabolic (SLAM) sequencing and Cleavage Under Target & Release Using Nuclease analysis (CUT&RUN), we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNA polymerase II with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitors, OTX015 and MZ1, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Interleucina-6/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Citocinas/metabolismo , Infecciones por Herpesviridae/metabolismo , Cromatina/metabolismo , Epigénesis Genética , Proteínas de Ciclo Celular/metabolismo
4.
PLoS Pathog ; 19(10): e1011703, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37883374

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Using scRNA-seq, we demonstrate that KSHV preferentially infects CD14+ monocytes, sustains viral lytic replication through the viral interleukin-6 (vIL-6), which activates STAT1 and 3, and induces an inflammatory gene expression program. To study the role of vIL-6 in monocytes upon KSHV infection, we generated recombinant KSHV with premature stop codon (vIL-6(-)) and its revertant viruses (vIL-6(+)). Infection of the recombinant viruses shows that both vIL-6(+) and vIL-6(-) KSHV infection induced indistinguishable host anti-viral response with STAT1 and 3 activations in monocytes; however, vIL-6(+), but not vIL-6(-), KSHV infection promoted the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL-6(+) KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL-6(-) KSHV infection or uninfected control. Notably, a viral nuclear long noncoding RNA (PAN RNA), which is required for sustaining KSHV gene expression, was substantially reduced in infected primary monocytes upon vIL-6(-) KSHV infection. These results highlight the critical role of vIL-6 in sustaining KSHV transcription in primary monocytes. Our findings also imply a clever strategy in which KSHV utilizes vIL-6 to secure its viral pool by expanding infected monocytes via differentiating into longer-lived dysfunctional macrophages. This mechanism may facilitate KSHV to escape from host immune surveillance and to support a lifelong infection.


Asunto(s)
Infecciones por Herpesviridae , Herpesvirus Humano 8 , Sarcoma de Kaposi , Humanos , Herpesvirus Humano 8/fisiología , Interleucina-6/metabolismo , Monocitos/metabolismo , Infecciones por Herpesviridae/metabolismo , Macrófagos/metabolismo , Factores Inmunológicos/metabolismo , Replicación Viral
6.
bioRxiv ; 2023 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-37503036

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) inflammatory cytokine syndrome (KICS) is a newly described chronic inflammatory disease condition caused by KSHV infection and is characterized by high KSHV viral load and sustained elevations of serum KSHV-encoded IL-6 (vIL-6) and human IL-6 (hIL-6). KICS has significant immortality and possesses greater risks of having other complications, which include malignancies. Although prolonged inflammatory vIL-6 exposure by persistent KSHV infection is expected to have key roles in subsequent disease development, the biological effects of prolonged vIL-6 exposure remain elusive. Using thiol-Linked Alkylation for the Metabolic Sequencing and Cleavage Under Target & Release Using Nuclease analysis, we studied the effect of prolonged vIL-6 exposure in chromatin landscape and resulting cytokine production. The studies showed that prolonged vIL-6 exposure increased Bromodomain containing 4 (BRD4) and histone H3 lysine 27 acetylation co-occupancies on chromatin, and the recruitment sites were frequently co-localized with poised RNAPII with associated enzymes. Increased BRD4 recruitment on promoters was associated with increased and prolonged NF-κB p65 binding after the lipopolysaccharide stimulation. The p65 binding resulted in quicker and sustained transcription bursts from the promoters; this mechanism increased total amounts of hIL-6 and IL-10 in tissue culture. Pretreatment with the BRD4 inhibitor, OTX015, eliminated the enhanced inflammatory cytokine production. These findings suggest that persistent vIL-6 exposure may establish a chromatin landscape favorable for the reactivation of inflammatory responses in monocytes. This epigenetic memory may explain the greater risk of chronic inflammatory disease development in KSHV-infected individuals.

7.
bioRxiv ; 2023 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-36945595

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic double-stranded DNA virus and the etiologic agent of Kaposi's sarcoma and hyperinflammatory lymphoproliferative disorders. Understanding the mechanism by which KSHV increases the infected cell population is crucial for curing KSHV-associated diseases. Here we demonstrate that KSHV preferentially infects CD14 + monocytes and sustains viral replication through the viral interleukin-6 (vIL6)-mediated activation of STAT1 and 3. Using vIL6-sufficient and vIL6-deficient recombinant KSHV, we demonstrated that vIL6 plays a critical role in promoting the proliferation and differentiation of KSHV-infected monocytes into macrophages. The macrophages derived from vIL6-sufficient KSHV infection showed a distinct transcriptional profile of elevated IFN-pathway activation with immune suppression and were compromised in T-cell stimulation function compared to those from vIL6-deficient KSHV infection or uninfected control. These results highlight a clever strategy, in which KSHV utilizes vIL6 to secure its viral pool by expanding infected dysfunctional macrophages. This mechanism also facilitates KSHV to escape from host immune surveillance and to establish a lifelong infection. 160. Summary: KSHV causes multiple inflammatory diseases, however, the underlying mechanism is not clear. Shimoda et al. demonstrate that KSHV preferentially infects monocytes and utilizes virally encoded interleukin-6 to expand and deregulate infected monocytes. This helps the virus escape from host immune surveillance.

8.
Biomark Res ; 11(1): 20, 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36803569

RESUMEN

BACKGROUND: Aging and diet are risks for metabolic diseases. Bile acid receptor farnesoid X receptor (FXR) knockout (KO) mice develop metabolic liver diseases that progress into cancer as they age, which is accelerated by Western diet (WD) intake. The current study uncovers the molecular signatures for diet and age-linked metabolic liver disease development in an FXR-dependent manner. METHODS: Wild-type (WT) and FXR KO male mice, either on a healthy control diet (CD) or a WD, were euthanized at the ages of 5, 10, or 15 months. Hepatic transcriptomics, liver, serum, and urine metabolomics as well as microbiota were profiled. RESULTS: WD intake facilitated hepatic aging in WT mice. In an FXR-dependent manner, increased inflammation and reduced oxidative phosphorylation were the primary pathways affected by WD and aging. FXR has a role in modulating inflammation and B cell-mediated humoral immunity which was enhanced by aging. Moreover, FXR dictated neuron differentiation, muscle contraction, and cytoskeleton organization in addition to metabolism. There were 654 transcripts commonly altered by diets, ages, and FXR KO, and 76 of them were differentially expressed in human hepatocellular carcinoma (HCC) and healthy livers. Urine metabolites differentiated dietary effects in both genotypes, and serum metabolites clearly separated ages irrespective of diets. Aging and FXR KO commonly affected amino acid metabolism and TCA cycle. Moreover, FXR is essential for colonization of age-related gut microbes. Integrated analyses uncovered metabolites and bacteria linked with hepatic transcripts affected by WD intake, aging, and FXR KO as well as related to HCC patient survival. CONCLUSION: FXR is a target to prevent diet or age-associated metabolic disease. The uncovered metabolites and microbes can be diagnostic markers for metabolic disease.

9.
Sci Rep ; 13(1): 1762, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720985

RESUMEN

The observed sex disparity in bladder cancer (BlCa) argues that androgen receptor (AR) signaling has a role in these malignancies. BlCas express full-length AR (FL-AR), constitutively active AR splice variants, including AR-v19, or both, and their depletion limits BlCa viability. However, the mechanistic basis of AR-dependence is unknown. Here, we depleted FL-AR, AR-v19, or all AR forms (T-AR), and performed RNA-seq studies to uncover that different AR forms govern distinct but partially overlapping transcriptional programs. Overlapping alterations include a decrease in mTOR and an increase of hypoxia regulated transcripts accompanied by a decline in oxygen consumption rate (OCR). Queries of BlCa databases revealed a significant negative correlation between AR expression and multiple hypoxia-associated transcripts arguing that this regulatory mechanism is a feature of high-grade malignancies. Our analysis of a 1600-compound library identified niclosamide as a strong ATPase inhibitor that reduces OCR in BlCa cells, decreased cell viability and induced apoptosis in a dose and time dependent manner. These results suggest that BlCa cells hijack AR signaling to enhance metabolic activity, promoting cell proliferation and survival; hence targeting this AR downstream vulnerability presents an attractive strategy to limit BlCa.


Asunto(s)
Receptores Androgénicos , Neoplasias de la Vejiga Urinaria , Humanos , Receptores Androgénicos/genética , Vejiga Urinaria , Neoplasias de la Vejiga Urinaria/genética , Células Epiteliales , Hipoxia
10.
Theranostics ; 12(18): 7884-7902, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36451859

RESUMEN

Background: Although combination immunotherapies incorporating local and systemic components have shown promising results in treating solid tumors, varied tumor microenvironments (TMEs) can impact immunotherapeutic efficacy. Method: We designed and evaluated treatment strategies for breast and pancreatic cancer combining magnetic resonance-guided focused ultrasound (MRgFUS) ablation and antibody therapies. With a combination of single-cell sequencing, spectral flow cytometry, and histological analyses, we profiled an immune-suppressed KPC (Kras+/LSL-G12D; Trp53+/LSL-R172H; Pdx1-Cre) pancreatic adenocarcinoma (MT4) model and a dense epithelial neu deletion (NDL) HER2+ mammary adenocarcinoma model with a greater fraction of lymphocytes, natural killer cells and activated dendritic cells. We then performed gene ontology analysis, spectral and digital cytometry to assess the immune response to combination immunotherapies and correlation with survival studies. Result: Based on gene ontology analysis, adding ablation to immunotherapy enriched immune cell migration pathways in the pancreatic cancer model and extensively enriched wound healing pathways in the breast cancer model. With CIBERSORTx digital cytometry, aCD40 + aPD-1 immunotherapy combinations enhanced dendritic cell activation in both models. In the MT4 TME, adding the combination of aCD40 antibody and checkpoint inhibitors (aPD-1 and aCTLA-4) with ablation was synergistic, increasing activated natural killer cells and T cells in distant tumors. Furthermore, ablation with immunotherapy upregulated critical Ly6c myeloid remodeling phenotypes that enhance T-cell effector function and increased granzyme and protease encoding genes by as much as 100-fold. Ablation combined with immunotherapy then extended survival in the MT4 model to a greater extent than immunotherapy alone. Conclusion: In summary, TME profiling informed a successful multicomponent treatment protocol incorporating ablation and facilitated differentiation of TMEs in which ablation is most effective.


Asunto(s)
Adenocarcinoma , Neoplasias Pancreáticas , Ratones , Animales , Neoplasias Pancreáticas/terapia , Inmunoterapia , Factores Inmunológicos , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Front Oncol ; 12: 972323, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36212452

RESUMEN

In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia stem cells (LSCs) is believed to drive population expansion and tumor growth. Failing to eliminate LSCs may result in disease relapse regardless of the amount of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to identify and characterize them. Acute precursor B lymphoblastic leukemia (B-ALL) cells derived from patients were incubated with fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose (NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by glucose uptake were then serially transplanted into mice and evaluated for leukemia initiating capacity. Gene expression profiles of these cells were characterized using RNA-Sequencing (RNA-Seq). A distinct population of NBDG-low cells was identified in patient B-ALL samples. These cells are a small population (1.92% of the entire leukemia population), have lower HLA expression, and are smaller in size (4.0 to 7.0 µm) than the rest of the leukemia population. All mice transplanted with NBDG-low cells developed leukemia between 5 and 14 weeks, while those transplanted with NBDG-high cells did not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-low mouse model resulted in successful leukemia development. NBDG-medium (NBDG-med) populations also developed leukemia. Interestingly, comprehensive molecular characterization of NBDG-low and NBDG-med cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a distinct profile of 2,162 differentially-expressed transcripts (DETs) (p<0.05) with 70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs showed distinct segregation of NBDG-low from NBDG-med and NBDG-high groups with marked transcription expression alterations in the NBDG-low group consistent with cancer survival. In conclusion, A unique subpopulation of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These cells, despite their quiescence characteristics, once transplanted in mice, showed potent leukemia initiating capacity. Although NBDG-med cells also initiated leukemia, gene expression profiling revealed a distinct signature that clearly distinguishes NBDG-low cells from NBDG-med and the rest of the leukemia populations. These results suggest that NBDG-low cells may represent quiescent LSCs. These cells can be activated in the appropriate environment in vivo, showing leukemia initiating capacity. Our study provides insight into the biologic mechanisms of B-ALL initiation and survival.

12.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36069866

RESUMEN

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Xenoinjertos , Ensayos Antitumor por Modelo de Xenoinjerto , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Modelos Animales de Enfermedad
13.
J Virol ; 96(14): e0056522, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35867573

RESUMEN

Eukaryotic genomes are structurally organized via the formation of multiple loops that create gene expression regulatory units called topologically associating domains (TADs). Here we revealed the KSHV TAD structure at 500 bp resolution and constructed a 3D KSHV genomic structural model with 2 kb binning. The latent KSHV genome formed very similar genomic architectures in three different naturally infected PEL cell lines and in an experimentally infected epithelial cell line. The majority of the TAD boundaries were occupied by structural maintenance of chromosomes (SMC1) cohesin complex and CCCTC-binding factor (CTCF), and the KSHV transactivator was recruited to those sites during reactivation. Triggering KSHV gene expression decreased prewired genomic loops within the regulatory unit, while contacts extending outside of regulatory borders increased, leading to formation of a larger regulatory unit with a shift from repressive to active compartments (B to A). The 3D genomic structural model proposes that the immediate early promoter region is localized on the periphery of the 3D viral genome during latency, while highly inducible noncoding RNA regions moved toward the inner space of the structure, resembling the configuration of a "bird cage" during reactivation. The compartment-like properties of viral episomal chromatin structure and its reorganization during the transition from latency may help facilitate viral gene transcription. IMPORTANCE The 3D architecture of chromatin allows for efficient arrangement, expression, and replication of genetic material. The genomes of all organisms studied to date have been found to be organized through some form of tiered domain structures. However, the architectural framework of the genomes of large double-stranded DNA viruses such as the herpesvirus family has not been reported. Prior studies with Kaposi's sarcoma-associated herpesvirus (KSHV) have indicated that the viral chromatin shares many biological properties exhibited by the host cell genome, essentially behaving as a mini human chromosome. Thus, we hypothesized that the KSHV genome may be organized in a similar manner. In this report, we describe the domain structure of the latent and lytic KSHV genome at 500 bp resolution and present a 3D genomic structural model for KSHV under each condition. These results add new insights into the complex regulation of the viral life cycle.


Asunto(s)
Cromatina , Herpesvirus Humano 8 , Cromatina/genética , Regulación Viral de la Expresión Génica , Genoma Viral , Herpesvirus Humano 8/genética , Humanos , Transactivadores/genética , Latencia del Virus/genética
14.
Cell Rep ; 39(6): 110788, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545047

RESUMEN

Kaposi sarcoma-associated herpesvirus (KSHV) establishes a latent infection in the cell nucleus, but where KSHV episomal genomes are tethered and the mechanisms underlying KSHV lytic reactivation are unclear. Here, we study the nuclear microenvironment of KSHV episomes and show that the KSHV latency-lytic replication switch is regulated via viral long non-coding (lnc)RNA-CHD4 (chromodomain helicase DNA binding protein 4) interaction. KSHV episomes localize with CHD4 and ADNP proteins, components of the cellular ChAHP complex. The CHD4 and ADNP proteins occupy the 5'-region of the highly inducible lncRNAs and terminal repeats of the KSHV genome together with latency-associated nuclear antigen (LANA). Viral lncRNA binding competes with CHD4 DNA binding, and KSHV reactivation sequesters CHD4 from the KSHV genome, which is also accompanied by detachment of KSHV episomes from host chromosome docking sites. We propose a model in which robust KSHV lncRNA expression determines the latency-lytic decision by regulating LANA/CHD4 binding to KSHV episomes.


Asunto(s)
Herpesvirus Humano 8 , ARN Largo no Codificante , Sarcoma de Kaposi , Antígenos Virales/genética , Antígenos Virales/metabolismo , Cromosomas/metabolismo , Herpesvirus Humano 8/genética , Humanos , Complejo Desacetilasa y Remodelación del Nucleosoma Mi-2/genética , Plásmidos , ARN Largo no Codificante/genética , Microambiente Tumoral , Latencia del Virus/genética
15.
J Burn Care Res ; 43(5): 987-996, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35639664

RESUMEN

Management of critically ill patients requires simultaneous administration of many medications. Treatment for patient comorbidities may lead to drug-drug interactions which decrease drug efficacy or increase adverse reactions. Current practices rely on a one-size-fits-all dosing approach. Pharmacogenetic testing is generally reserved for addressing problems rather than used proactively to optimize care. We hypothesized that burn and surgery patients will have one or more genetic variants in drug metabolizing pathways used by one or more medications administered during the patient's hospitalization. The aim of this study was to determine the frequency of variants with abnormal function in the primary drug pathways and identify which medications may be impacted. Genetic (19 whole exome and 11 whole genome) and medication data from 30 pediatric burn and surgery patients were analyzed to identify pharmacogene-drug associations. Nineteen patients were identified with predicted altered function in one or more of the following genes: CYP2C9, CYP2C19, CYP2D6, and CYP3A4. The majority had decreased function, except for several patients with CYP2C19 rapid or ultrarapid variants. Some drugs administered during hospitalization that rely on these pathways include hydrocodone, oxycodone, methadone, ibuprofen, ketorolac, celecoxib, diazepam, famotidine, diphenhydramine, and glycopyrrolate. Approximately one-third of the patients tested had functionally impactful genotypes in each of the primary drug metabolizing pathways. This study suggests that genetic variants may in part explain the vast variability in drug efficacy and suggests that future pharmacogenetics research may optimize dosing regimens.


Asunto(s)
Quemaduras , Pruebas de Farmacogenómica , Quemaduras/tratamiento farmacológico , Quemaduras/genética , Quemaduras/cirugía , Niño , Citocromo P-450 CYP2C19/genética , Genotipo , Humanos , Preparaciones Farmacéuticas , Farmacogenética
16.
Biology (Basel) ; 11(2)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35205085

RESUMEN

We previously demonstrated that the Trp53-R270H mutation can drive prostate cancer (CaP) initiation using the FVB.129S4 (Trp53tm3Tyj/wt); FVB.129S (Nkx3-1tm3(cre)Mmswt) genetically engineered mouse model (GEM). We now validate this finding in a different model (B6.129S4-Trp53tm3.1Tyj/J mice) and use RNA-sequencing (RNA-Seq) to identify genes which may contribute to Trp53 R270H-mediated prostate carcinogenesis. Wildtype (Trp53WT/WT), heterozygous (Trp53R270H/WT), and homozygous mice (Trp53R270H/R270H) were exposed to 5 Gy irradiation to activate and stabilize p53, and thereby enhance our ability to identify differences in transcriptional activity between the three groups of mice. Mouse prostates were harvested 6 h post-irradiation and processed for histological/immunohistochemistry (IHC) analysis or were snap-frozen for RNA extraction and transcriptome profiling. IHC analyses determined that presence of the Trp53-R270H mutation impacts apoptosis (lower caspase 3 activity) but not cell proliferation (Ki67). RNA-Seq analysis identified 1378 differentially expressed genes, including wildtype p53 target genes (E.g., Cdkn1a, Bax, Bcl2, Kras, Mdm2), p53 gain-of-function (GOF)-related genes (Mgmt, Id4), and CaP-related genes (Cav-1, Raf1, Kras). Further understanding the mechanisms which contribute to prostate carcinogenesis could allow for the development of improved preventive methods, diagnostics, and treatments for CaP.

17.
Commun Biol ; 4(1): 1330, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857874

RESUMEN

In herpesvirus replicating cells, host cell gene transcription is frequently down-regulated because important transcriptional apparatuses are appropriated by viral transcription factors. Here, we show a small peptide derived from the Kaposi's sarcoma-associated herpesvirus transactivator (K-Rta) sequence, which attenuates cellular MYC expression, reduces cell proliferation, and selectively kills cancer cell lines in both tissue culture and a xenograft tumor mouse model. Mechanistically, the peptide functions as a decoy to block the recruitment of coactivator complexes consisting of Nuclear receptor coactivator 2 (NCOA2), p300, and SWI/SNF proteins to the MYC promoter in primary effusion lymphoma cells. Thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq) with target-transcriptional analyses further confirm that the viral peptide directly attenuates MYC and MYC-target gene expression. This study thus provides a unique tool to control MYC activation, which may be used as a therapeutic payload to treat MYC-dependent diseases such as cancers and autoimmune diseases.


Asunto(s)
Herpesvirus Humano 8/fisiología , Leucemia/fisiopatología , Linfoma/fisiopatología , Proteínas Proto-Oncogénicas c-myc/genética , Transactivadores/genética , Línea Celular Tumoral , Proliferación Celular , Herpesvirus Humano 8/química , Humanos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Transactivadores/metabolismo , Células Tumorales Cultivadas
18.
Oncogene ; 40(35): 5379-5392, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34272475

RESUMEN

Targeting androgen signaling with the second-generation anti-androgen drugs, such as enzalutamide (Enza), abiraterone (Abi), apalutamide (Apal), and darolutamide (Daro), is the mainstay for the treatment of castration-resistant prostate cancer (CRPC). While these treatments are effective initially, resistance occurs frequently. Continued expression of androgen receptor (AR) and its variants such as AR-V7 despite AR-targeted therapy contributes to treatment resistance and cancer progression in advanced CRPC patients. This highlights the need for new strategies blocking continued AR signaling. Here, we identify a novel AR/AR-V7 degrader (ARVib) and found that ARVib effectively degrades AR/AR-V7 protein and attenuates AR/AR-V7 downstream target gene expression in prostate cancer cells. Mechanistically, ARVib degrades AR/AR-V7 protein through the ubiquitin-proteasome pathway mediated by HSP70/STUB1 machinery modulation. ARVib suppresses HSP70 expression and promotes STUB1 nuclear translocation, where STUB1 binds to AR/AR-V7 and promotes its ubiquitination and degradation. ARVib significantly inhibits resistant prostate tumor growth and improves enzalutamide treatment in vitro and in vivo. These data suggest that ARVib has potential for development as an AR/AR-V7 degrader to treat resistant CRPC.


Asunto(s)
Neoplasias de la Próstata , Receptores Androgénicos , Humanos , Masculino , Transducción de Señal
19.
Front Oncol ; 11: 648097, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33842362

RESUMEN

BACKGROUND: Renal medullary carcinoma (RMC) is a rare but aggressive tumor often complicated by early lung metastasis with few treatment options and very poor outcomes. There are currently no verified RMC patient-derived xenograft (PDX) mouse models established from metastatic pleural effusion (PE) available to study RMC and evaluate new therapeutic options. METHODS: Renal tumor tissue and malignant PE cells from an RMC patient were successfully engrafted into 20 NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice. We evaluated the histopathological similarity of the renal tumor and PE PDXs with the original patient renal tumor and PE, respectively. We then evaluated the molecular integrity of the renal tumor PDXs between passages, as well as the PE PDX compared to two generations of renal tumor PDXs, by microarray analysis. The therapeutic efficacy of sunitinib and temsirolimus was tested in a serially-transplanted generation of 27 PE PDX mice. RESULTS: The pathologic characteristics of the patient renal tumor and patient PE were retained in the PDXs. Gene expression profiling revealed high concordance between the two generations of renal tumor PDXs (RMC-P0 vs. RMC-P1, r=0.865), as well as between the first generation PE PDX and each generation of the renal tumor PDX (PE-P0 vs. RMC-P0, r=0.919 and PE-P0 vs. RMC-P1, r=0.843). A low number (626) of differentially-expressed genes (DEGs) was seen between the first generation PE PDX and the first generation renal tumor PDX. In the PE-P1 xenograft, sunitinib significantly reduced tumor growth (p<0.001) and prolonged survival (p=0.004) compared to the vehicle control. CONCLUSIONS: A metastatic PE-derived RMC PDX model was established and shown to maintain histologic features of the patient cancer. Molecular integrity of the PDX models was well maintained between renal tumor and PE PDX as well as between two successive renal tumor PDX generations. Using the PE PDX model, sunitinib demonstrated therapeutic efficacy for RMC. This model can serve as a foundation for future mechanistic and therapeutic studies for primary and metastatic RMC.

20.
Sci Rep ; 11(1): 927, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441763

RESUMEN

High intensity focused ultrasound (HIFU) rapidly and non-invasively destroys tumor tissue. Here, we sought to assess the immunomodulatory effects of MR-guided HIFU and its combination with the innate immune agonist CpG and checkpoint inhibitor anti-PD-1. Mice with multi-focal breast cancer underwent ablation with a parameter set designed to achieve mechanical disruption with minimal thermal dose or a protocol in which tumor temperature reached 65 °C. Mice received either HIFU alone or were primed with the toll-like receptor 9 agonist CpG and the checkpoint modulator anti-PD-1. Both mechanical HIFU and thermal ablation induced a potent inflammatory response with increased expression of Nlrp3, Jun, Mefv, Il6 and Il1ß and alterations in macrophage polarization compared to control. Furthermore, HIFU upregulated multiple innate immune receptors and immune pathways, including Nod1, Nlrp3, Aim2, Ctsb, Tlr1/2/4/7/8/9, Oas2, and RhoA. The inflammatory response was largely sterile and consistent with wound-healing. Priming with CpG attenuated Il6 and Nlrp3 expression, further upregulated expression of Nod2, Oas2, RhoA, Pycard, Tlr1/2 and Il12, and enhanced T-cell number and activation while polarizing macrophages to an anti-tumor phenotype. The tumor-specific antigen, cytokines and cell debris liberated by HIFU enhance response to innate immune agonists.


Asunto(s)
Neoplasias de la Mama/inmunología , Neoplasias de la Mama/terapia , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Animales , Neoplasias de la Mama/fisiopatología , Modelos Animales de Enfermedad , Humanos , Inmunidad , Espectroscopía de Resonancia Magnética/métodos , Ratones , Ratones Endogámicos , Neoplasias/inmunología , Oligodesoxirribonucleótidos/farmacología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Pirina/metabolismo , Ultrasonografía/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...