Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 19(5): 3143-3150, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30939027

RESUMEN

Nanomechanical resonators have emerged as sensors with exceptional sensitivities. These sensing capabilities open new possibilities in the studies of the thermodynamic properties in condensed matter. Here, we use mechanical sensing as a novel approach to measure the thermal properties of low-dimensional materials. We measure the temperature dependence of both the thermal conductivity and the specific heat capacity of a transition metal dichalcogenide monolayer down to cryogenic temperature, something that has not been achieved thus far with a single nanoscale object. These measurements show how heat is transported by phonons in two-dimensional systems. Both the thermal conductivity and the specific heat capacity measurements are consistent with predictions based on first-principles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA