Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 15(5): 1412-1431, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33314742

RESUMEN

The cellular receptor Notch1 is a central regulator of T-cell development, and as a consequence, Notch1 pathway appears upregulated in > 65% of the cases of T-cell acute lymphoblastic leukemia (T-ALL). However, strategies targeting Notch1 signaling render only modest results in the clinic due to treatment resistance and severe side effects. While many investigations reported the different aspects of tumor cell growth and leukemia progression controlled by Notch1, less is known regarding the modifications of cellular metabolism induced by Notch1 upregulation in T-ALL. Previously, glutaminolysis inhibition has been proposed to synergize with anti-Notch therapies in T-ALL models. In this work, we report that Notch1 upregulation in T-ALL induced a change in the metabolism of the important amino acid glutamine, preventing glutamine synthesis through the downregulation of glutamine synthetase (GS). Downregulation of GS was responsible for glutamine addiction in Notch1-driven T-ALL both in vitro and in vivo. Our results also confirmed an increase in glutaminolysis mediated by Notch1. Increased glutaminolysis resulted in the activation of the mammalian target of rapamycin complex 1 (mTORC1) pathway, a central controller of cell growth. However, glutaminolysis did not play any role in Notch1-induced glutamine addiction. Finally, the combined treatment targeting mTORC1 and limiting glutamine availability had a synergistic effect to induce apoptosis and to prevent Notch1-driven leukemia progression. Our results placed glutamine limitation and mTORC1 inhibition as a potential therapy against Notch1-driven leukemia.


Asunto(s)
Glutamato-Amoníaco Ligasa/genética , Glutamina/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo/genética , Regulación Enzimológica de la Expresión Génica , Regulación Leucémica de la Expresión Génica , Glutamato-Amoníaco Ligasa/metabolismo , Humanos , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos NOD , Ratones Transgénicos , Leucemia-Linfoma Linfoblástico de Células Precursoras/patología , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal/genética
2.
Oncotarget ; 10(26): 2486-2507, 2019 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-31069012

RESUMEN

The plasma membrane is an attractive target for new anticancer drugs, not least because regulating its lipid structure can control multiple signaling pathways involved in cancer cell proliferation, differentiation and survival. Accordingly, the novel anticancer drug hydroxytriolein (HTO) was designed to interact with and regulate the composition and structure of the membrane, which in turn controls the interaction of amphitropic signaling membrane proteins with the lipid bilayer. Changes in signaling provoked by HTO impair the growth of triple negative breast cancer (TNBC) cells, aggressive breast tumor cells that have a worse prognosis than other types of breast cancers and for which there is as yet no effective targeted therapy. HTO alters the lipid composition and structure of cancer cell membranes, inhibiting the growth of MDA-MB-231 and BT-549 TNBC cells in vitro. Depending on the cellular context, HTO could regulate two pathways involved in TNBC cell proliferation. On the one hand, HTO might stimulate ERK signaling and induce TNBC cell autophagy, while on the other, it could increase dihydroceramide and ceramide production, which would inhibit Akt independently of EGFR activation and provoke cell death. In vivo studies using a model of human TNBC show that HTO and its fatty acid constituent (2-hydroxyoleic acid) impair tumor growth, with no undesired side effects. For these reasons, HTO appears to be a promising anticancer molecule that targets the lipid bilayer (membrane-lipid therapy). By regulating membrane lipids, HTO controls important signaling pathways involved in cancer cell growth, the basis of its pharmacological efficacy and safety.

3.
Cancer Res ; 78(18): 5384-5397, 2018 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30054335

RESUMEN

The mTOR is a central regulator of cell growth and is highly activated in cancer cells to allow rapid tumor growth. The use of mTOR inhibitors as anticancer therapy has been approved for some types of tumors, albeit with modest results. We recently reported the synthesis of ICSN3250, a halitulin analogue with enhanced cytotoxicity. We report here that ICSN3250 is a specific mTOR inhibitor that operates through a mechanism distinct from those described for previous mTOR inhibitors. ICSN3250 competed with and displaced phosphatidic acid from the FRB domain in mTOR, thus preventing mTOR activation and leading to cytotoxicity. Docking and molecular dynamics simulations evidenced not only the high conformational plasticity of the FRB domain, but also the specific interactions of both ICSN3250 and phosphatidic acid with the FRB domain in mTOR. Furthermore, ICSN3250 toxicity was shown to act specifically in cancer cells, as noncancer cells showed up to 100-fold less sensitivity to ICSN3250, in contrast to other mTOR inhibitors that did not show selectivity. Thus, our results define ICSN3250 as a new class of mTOR inhibitors that specifically targets cancer cells.Significance: ICSN3250 defines a new class of mTORC1 inhibitors that displaces phosphatidic acid at the FRB domain of mTOR, inducing cell death specifically in cancer cells but not in noncancer cells. Cancer Res; 78(18); 5384-97. ©2018 AACR.


Asunto(s)
Neoplasias/metabolismo , Ácidos Fosfatidicos/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular , Técnicas de Cocultivo , Fibroblastos/metabolismo , Células HCT116 , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Humanos , Células K562 , Ratones , Modelos Moleculares , Simulación de Dinámica Molecular , Conformación Proteica , Inhibidores de Proteínas Quinasas/farmacología
4.
Mol Cell Oncol ; 4(3): e1297284, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28616576

RESUMEN

A master promoter of cell growth, mammalian target of rapamycin (mTOR) is upregulated in a large percentage of cancer cells. Still, targeting mTOR using rapamycin has a limited outcome in patients. Our recent results highlight the additional role of mTOR as a tumor suppressor, explaining these modest results in the clinic.

5.
J Lipid Res ; 58(8): 1598-1612, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28630259

RESUMEN

Adult polyglucosan body disease (APBD) is a neurological disorder characterized by adult-onset neurogenic bladder, spasticity, weakness, and sensory loss. The disease is caused by aberrant glycogen branching enzyme (GBE) (GBE1Y329S) yielding less branched, globular, and soluble glycogen, which tends to aggregate. We explore here whether, despite being a soluble enzyme, GBE1 activity is regulated by protein-membrane interactions. Because soluble proteins can contact a wide variety of cell membranes, we investigated the interactions of purified WT and GBE1Y329S proteins with different types of model membranes (liposomes). Interestingly, both triheptanoin and some triacylglycerol mimetics (TGMs) we have designed (TGM0 and TGM5) markedly enhance GBE1Y329S activity, possibly enough for reversing APBD symptoms. We show that the GBE1Y329S mutation exposes a hydrophobic amino acid stretch, which can either stabilize and enhance or alternatively, reduce the enzyme activity via alteration of protein-membrane interactions. Additionally, we found that WT, but not Y329S, GBE1 activity is modulated by Ca2+ and phosphatidylserine, probably associated with GBE1-mediated regulation of energy consumption and storage. The thermal stabilization and increase in GBE1Y329S activity induced by TGM5 and its omega-3 oil structure suggest that this molecule has a considerable therapeutic potential for treating APBD.


Asunto(s)
Materiales Biomiméticos/farmacología , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Sistema de la Enzima Desramificadora del Glucógeno/metabolismo , Enfermedad del Almacenamiento de Glucógeno/tratamiento farmacológico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Triglicéridos/metabolismo , Secuencia de Aminoácidos , Materiales Biomiméticos/uso terapéutico , Estabilidad de Enzimas , Sistema de la Enzima Desramificadora del Glucógeno/química , Sistema de la Enzima Desramificadora del Glucógeno/genética , Humanos , Mutagénesis Sitio-Dirigida , Mutación , Unión Proteica/efectos de los fármacos , Temperatura
6.
Biochim Biophys Acta Biomembr ; 1859(9 Pt B): 1526-1535, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28411171

RESUMEN

G proteins often bear myristoyl, palmitoyl and isoprenyl moieties, which favor their association with the membrane and their accumulation in G Protein Coupled Receptor-rich microdomains. These lipids influence the biophysical properties of membranes and thereby modulate G protein binding to bilayers. In this context, we showed here that geranylgeraniol, but neither myristate nor palmitate, increased the inverted hexagonal (HII) phase propensity of phosphatidylethanolamine-containing membranes. While myristate and palmitate preferentially associated with phosphatidylcholine membranes, geranylgeraniol favored nonlamellar-prone membranes. In addition, Gαi1 monomers had a higher affinity for lamellar phases, while Gßγ and Gαßγ showed a marked preference for nonlamellar prone membranes. Moreover, geranylgeraniol enhanced the binding of G protein dimers and trimers to phosphatidylethanolamine-containing membranes, yet it decreased that of monomers. By contrast, both myristate and palmitate increased the Gαi1 preference for lamellar membranes. Palmitoylation reinforced the binding of the monomer to PC membranes and myristoylation decreased its binding to PE-enriched bilayer. Finally, binding of dimers and trimers to lamellar-prone membranes was decreased by palmitate and myristate, but it was increased in nonlamellar-prone bilayers. These results demonstrate that co/post-translational G protein lipid modifications regulate the membrane lipid structure and that they influence the physico-chemical properties of membranes, which in part explains why G protein subunits sort to different plasma membrane domains. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá.


Asunto(s)
Proteínas de Unión al GTP/química , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Diterpenos/farmacología , Proteínas de la Membrana/química , Multimerización de Proteína
7.
Nat Commun ; 8: 14124, 2017 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-28112156

RESUMEN

A master coordinator of cell growth, mTORC1 is activated by different metabolic inputs, particularly the metabolism of glutamine (glutaminolysis), to control a vast range of cellular processes, including autophagy. As a well-recognized tumour promoter, inhibitors of mTORC1 such as rapamycin have been approved as anti-cancer agents, but their overall outcome in patients is rather poor. Here we show that mTORC1 also presents tumour suppressor features in conditions of nutrient restrictions. Thus, the activation of mTORC1 by glutaminolysis during nutritional imbalance inhibits autophagy and induces apoptosis in cancer cells. Importantly, rapamycin treatment reactivates autophagy and prevents the mTORC1-mediated apoptosis. We also observe that the ability of mTORC1 to activate apoptosis is mediated by the adaptor protein p62. Thus, the mTORC1-mediated upregulation of p62 during nutrient imbalance induces the binding of p62 to caspase 8 and the subsequent activation of the caspase pathway. Our data highlight the role of autophagy as a survival mechanism upon rapamycin treatment.


Asunto(s)
Apoptosis/fisiología , Glutamina/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/antagonistas & inhibidores , Anticuerpos , Autofagia , Línea Celular Tumoral , Medios de Cultivo/química , Regulación de la Expresión Génica/fisiología , Humanos , Plásmidos , ARN Mensajero/genética , ARN Mensajero/metabolismo
8.
J Am Soc Mass Spectrom ; 27(2): 244-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26407555

RESUMEN

Xenografts are commonly used to test the effect of new drugs on human cancer. However, because of their heterogeneity, analysis of the results is often controversial. Part of the problem originates in the existence of tumor cells at different metabolic stages: from metastatic to necrotic cells, as it happens in real tumors. Imaging mass spectrometry is an excellent solution for the analysis of the results as it yields detailed information not only on the composition of the tissue but also on the distribution of the biomolecules within the tissue. Here, we use imaging mass spectrometry to determine the distribution of phosphatidylcholine (PC), phosphatidylethanolamine (PE), and their plasmanyl- and plasmenylether derivatives (PC-P/O and PE-P/O) in xenografts of five different tumor cell lines: A-549, NCI-H1975, BX-PC3, HT29, and U-87 MG. The results demonstrate that the necrotic areas showed a higher abundance of Na(+) adducts and of PC-P/O species, whereas a large abundance of PE-P/O species was found in all the xenografts. Thus, the PC/PC-ether and Na(+)/K(+) ratios may highlight the necrotic areas while an increase on the number of PE-ether species may be pointing to the existence of viable tumor tissues. Furthermore, the existence of important changes in the concentration of Na(+) and K(+) adducts between different tissues has to be taken into account while interpreting the imaging mass spectrometry results. Graphical Abstract ᅟ.


Asunto(s)
Biomarcadores/análisis , Lípidos/análisis , Espectrometría de Masas/métodos , Necrosis/metabolismo , Animales , Biomarcadores/metabolismo , Línea Celular Tumoral , Cromatografía Líquida de Alta Presión/métodos , Xenoinjertos , Humanos , Lípidos/química , Masculino , Ratones Desnudos , Fosfatidilcolinas/análisis , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/análisis , Fosfatidiletanolaminas/metabolismo , Plasmalógenos/análisis , Potasio/química , Potasio/metabolismo , Sodio/química , Sodio/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Anal Chem ; 88(1): 1022-9, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26607740

RESUMEN

Xenografts are a popular model for the study of the action of new antitumor drugs. However, xenografts are highly heterogeneous structures, and therefore it is sometimes difficult to evaluate the effects of the compounds on tumor metabolism. In this context, imaging mass spectrometry (IMS) may yield the required information, due to its inherent characteristics of sensitivity and spatial resolution. To the best of our knowledge, there is still no clear analysis protocol to properly evaluate the changes between samples due to the treatment. Here we present a protocol for the evaluation of the effect of 2-hydroxyoleic acid (2-OHOA), an antitumor compound, on xenografts lipidome based on IMS. Direct treated/control comparison did not show conclusive results. As we will demonstrate, a more sophisticated protocol was required to evaluate these changes including the following: (1) identification of different areas in the xenograft, (2) classification of these areas (necrotic/viable) to compare similar types of tissues, (3) suppression of the effect of the variation of adduct formation between samples, and (4) normalization of the variables using the standard deviation to eliminate the excessive impact of the stronger peaks in the statistical analysis. In this way, the 36 lipid species that experienced the largest changes between treated and control were identified. Furthermore, incorporation of 2-hydroxyoleic acid to a sphinganine base was also confirmed by MS/MS. Comparison of the changes observed here with previous results obtained with different techniques demonstrates the validity of the protocol.


Asunto(s)
Antineoplásicos/farmacología , Lípidos/análisis , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/metabolismo , Ácidos Oléicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Ratones
10.
J Pharmacol Exp Ther ; 354(2): 213-24, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26065701

RESUMEN

Membrane lipid therapy is a novel approach to rationally design or discover therapeutic molecules that target membrane lipids. This strategy has been used to design synthetic fatty acid analogs that are currently under study in clinical trials for the treatment of cancer. In this context, and with the aim of controlling tumor cell growth, we have designed and synthesized a hydroxylated analog of triolein, hydroxytriolein (HTO). Both triolein and HTO regulate the biophysical properties of model membranes, and they inhibit the growth of non-small-cell lung cancer (NSCLC) cell lines in vitro. The molecular mechanism underlying the antiproliferative effect of HTO involves regulation of the lipid membrane structure, protein kinase C-α and extracellular signal-regulated kinase activation, the production of reactive oxygen species, and autophagy. In vivo studies on a mouse model of NSCLC showed that HTO, but not triolein, impairs tumor growth, which could be associated with the relative resistance of HTO to enzymatic degradation. The data presented explain in part why olive oil (whose main component is the triacylglycerol triolein) is preventive but not therapeutic, and they demonstrate a potent effect of HTO against cancer. HTO shows a good safety profile, it can be administered orally, and it does not induce nontumor cell (fibroblast) death in vitro or side effects in mice, reflecting its specificity for cancer cells. For these reasons, HTO is a good candidate as a drug to combat cancer that acts by regulating lipid structure and function in the cancer cell membrane.


Asunto(s)
Antineoplásicos/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Pulmonares/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Proteína Quinasa C-alfa/metabolismo , Trioleína/análogos & derivados , Trioleína/farmacología , Animales , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Proliferación Celular/fisiología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Ratones Desnudos , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Trioleína/química , Trioleína/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
11.
J Am Soc Mass Spectrom ; 25(7): 1237-46, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24760294

RESUMEN

Human tumor xenografts in immunodeficient mice are a very popular model to study the development of cancer and to test new drug candidates. Among the parameters analyzed are the variations in the lipid composition, as they are good indicators of changes in the cellular metabolism. Here, we present a study on the distribution of lipids in xenografts of NCI-H1975 human lung cancer cells, using MALDI imaging mass spectrometry and UHPLC-ESI-QTOF. The identification of lipids directly from the tissue by MALDI was aided by the comparison with identification using ESI ionization in lipid extracts from the same xenografts. Lipids belonging to PCs, PIs, SMs, DAG, TAG, PS, PA, and PG classes were identified and their distribution over the xenograft was determined. Three areas were identified in the xenograft, corresponding to cells in different metabolic stages and to a layer of adipose tissue that covers the xenograft.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Xenoinjertos/química , Lípidos/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Línea Celular Tumoral , Humanos , Ratones , Imagen Molecular
12.
Biochim Biophys Acta ; 1838(6): 1628-37, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24412218

RESUMEN

The complex dual mechanism of action of 2-hydroxyoleic acid (2OHOA), a potent anti-tumor compound used in membrane lipid therapy (MLT), has yet to be fully elucidated. It has been demonstrated that 2OHOA increases the sphingomyelin (SM) cell content via SM synthase (SGMS) activation. Its presence in membranes provokes changes in the membrane lipid structure that induce the translocation of PKC to the membrane and the subsequent overexpression of CDK inhibitor proteins (e.g., p21(Cip1)). In addition, 2OHOA also induces the translocation of Ras to the cytoplasm, provoking the silencing of MAPK and its related pathways. These two differential modes of action are triggered by the interactions of 2OHOA with either lipids or proteins. To investigate the molecular basis of the different interactions of 2OHOA with membrane lipids and proteins, we synthesized the R and S enantiomers of this compound. A molecular dynamics study indicated that both enantiomers interact similarly with lipid bilayers, which was further confirmed by X-ray diffraction studies. By contrast, only the S enantiomer was able to activate SMS in human glioma U118 cells. Moreover, the anti-tumor efficacy of the S enantiomer was greater than that of the R enantiomer, as the former can act through both MLT mechanisms. The present study provides additional information on this novel therapeutic approach and on the magnitude of the therapeutic effects of type-1 and type-2 MLT approaches. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Asunto(s)
Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Membrana Dobles de Lípidos/química , Lípidos de la Membrana/química , Ácidos Oléicos/farmacología , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo , Animales , Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Membrana Celular/metabolismo , Factores de Transcripción Forkhead/fisiología , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Humanos , Membrana Dobles de Lípidos/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Ratones Desnudos , Modelos Químicos , Simulación de Dinámica Molecular , Ácidos Oléicos/química , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Células Tumorales Cultivadas , Difracción de Rayos X
13.
Biochim Biophys Acta ; 1838(6): 1680-92, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24374316

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative pathology with relevant unmet therapeutic needs. Both natural aging and AD have been associated with a significant decline in the omega-3 polyunsaturated fatty acid docosahexaenoic acid (DHA), and accordingly, administration of DHA has been proposed as a possible treatment for this pathology. However, recent clinical trials in mild-to-moderately affected patients have been inconclusive regarding the real efficacy of DHA in halting this disease. Here, we show that the novel hydroxyl-derivative of DHA (2-hydroxydocosahexaenoic acid - OHDHA) has a strong therapeutic potential to treat AD. We demonstrate that OHDHA administration increases DHA levels in the brain of a transgenic mouse model of AD (5xFAD), as well as those of phosphatidylethanolamine (PE) species that carry long polyunsaturated fatty acids (PUFAs). In 5xFAD mice, administration of OHDHA induced lipid modifications that were paralleled with a reduction in amyloid-ß (Αß) accumulation and full recovery of cognitive scores. OHDHA administration also reduced Aß levels in cellular models of AD, in association with alterations in the subcellular distribution of secretases and reduced Aß-induced tau protein phosphorylation as well. Furthermore, OHDHA enhanced the survival of neuron-like differentiated cells exposed to different insults, such as oligomeric Aß and NMDA-mediated neurotoxicity. These results were supported by model membrane studies in which incorporation of OHDHA into lipid-raft-like vesicles was shown to reduce the binding affinity of oligomeric and fibrillar Aß to membranes. Finally, the OHDHA concentrations used here did not produce relevant toxicity in zebrafish embryos in vivo. In conclusion, we demonstrate the pleitropic effects of OHDHA that might prove beneficial to treat AD, which suggests that an upstream event, probably the modulation of the membrane lipid composition and structure, influences cellular homeostasis reversing the neurodegenerative process. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Ácidos Docosahexaenoicos/farmacología , Lípidos de la Membrana/química , Neuroblastoma/tratamiento farmacológico , Fosfolípidos/metabolismo , Esfingolípidos/metabolismo , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/fisiología , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Colesterol/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/química , Embrión no Mamífero/citología , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Humanos , Masculino , Lípidos de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroblastoma/metabolismo , Fosforilación/efectos de los fármacos , Presenilina-1/fisiología , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Tumorales Cultivadas , Liposomas Unilamelares/metabolismo , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Proteínas tau/genética , Proteínas tau/metabolismo
14.
Biogerontology ; 14(6): 763-75, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24114505

RESUMEN

Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. In the last years, abnormalities of lipid metabolism and in particular of docosahexaenoic acid (DHA) have been recently linked with the development of the disease. According to the recent studies showing how hydroxylation of fatty acids enhances their biological activity, here we show that chronic treatment with a hydroxylated derivative of DHA, the 2-hydroxy-DHA (2OHDHA) in the 5XFAD transgenic mice model of AD improves performance in the radial arm maze test and restores cell proliferation in the dentate gyrus, with no changes in the presence of beta amyloid (Aß) plaques. These results suggest that 2OHDHA induced restoration of cell proliferation can be regarded as a major component in memory recovery that is independent of Aß load thus, setting the starting point for the development of a new drug for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Precursor de Proteína beta-Amiloide/genética , Proliferación Celular/efectos de los fármacos , Cognición/efectos de los fármacos , Giro Dentado/efectos de los fármacos , Ácidos Docosahexaenoicos/farmacología , Mutación , Nootrópicos/farmacología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Animales , Conducta Animal/efectos de los fármacos , Giro Dentado/metabolismo , Giro Dentado/patología , Modelos Animales de Enfermedad , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Memoria/efectos de los fármacos , Ratones , Ratones Transgénicos
15.
PLoS One ; 8(8): e72052, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24015204

RESUMEN

BACKGROUND: Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS: The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE: These findings demonstrate the potential of 2OAA as a NSAID.


Asunto(s)
Ácidos Araquidónicos/farmacología , Inhibidores de la Ciclooxigenasa 2/farmacología , Animales , Ácidos Araquidónicos/toxicidad , Línea Celular , Supervivencia Celular/efectos de los fármacos , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inhibidores de la Ciclooxigenasa 2/toxicidad , Evaluación Preclínica de Medicamentos , Humanos , Lipopolisacáridos/farmacología , Ratones , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Óxido Nítrico Sintasa de Tipo II/metabolismo , Proteolisis/efectos de los fármacos , Factor de Necrosis Tumoral alfa/sangre
16.
Biochim Biophys Acta ; 1828(5): 1405-13, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23360770

RESUMEN

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) is a potent antitumor drug that we rationally designed to regulate the membrane lipid composition and structure. The lipid modifications caused by 2OHOA treatments induce important signaling changes that end up with cell death (Terés et al., 2012 [1]). One of these regulatory effects is restoration of sphingomyelin levels, which are markedly lower in cancer cells compared to normal cells (Barceló-Coblijn et al., 2011 [2]). In this study, we report another important regulatory effect of 2OHOA on cancer cell membrane composition: a large increase in 2OHOA levels, accounting for ~15% of the fatty acids present in membrane phospholipids, in human glioma (SF767 and U118) and lung cancer (A549) cells. Concomitantly, we observed marked reductions in oleic acid levels and inhibition of stearoyl-CoA desaturase. The impact of these changes on the biophysical properties of the lipid bilayer was evaluated in liposomes reconstituted from cancer cell membrane lipid extracts. Thus, 2OHOA increased the packing of ordered domains and decreased the global order of the membrane. The present results further support and extend the knowledge about the mechanism of action for 2OHOA, based on the regulation of the membrane lipid composition and structure and subsequent modulation of membrane protein-associated signaling.


Asunto(s)
Antineoplásicos/química , Membrana Celular/química , Ácidos Grasos/química , Ácidos Oléicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Fenómenos Biofísicos , Línea Celular , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Cromatografía en Capa Delgada , Ácidos Grasos/metabolismo , Humanos , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectrometría de Masas , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Neoplasias/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Ácidos Oléicos/metabolismo , Ácidos Oléicos/farmacología , Fosfatidilcolinas/química , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Fosfolípidos/química , Fosfolípidos/metabolismo , Estearoil-CoA Desaturasa/antagonistas & inhibidores , Estearoil-CoA Desaturasa/metabolismo , Factores de Tiempo , Triglicéridos/química , Triglicéridos/metabolismo
17.
Autophagy ; 8(10): 1542-4, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22892762

RESUMEN

The very high mortality rate of gliomas reflects the unmet therapeutic need associated with this type of brain tumor. We have discovered that the plasma membrane fulfills a critical role in the propagation of tumorigenic signals, whereby changes in membrane lipid content can either activate or silence relevant pathways. We have designed a synthetic fatty acid, 2-hydroxyoleic acid (2OHOA), that specifically activates sphingomyelin synthase (SGMS), thereby modifying the lipid content of cancer cell membranes and restoring lipid levels to those found in normal cells. In reverting, the structure of the membrane by activating SGMS, 2OHOA inhibits the RAS-MAPK pathway, which in turn fails to activate the CCND (Cyclin D)-CDK4/CDK6 and PI3K-AKT1 pathways. The overall result in SF767 cancer cells, a line that is resistant to apoptosis, is the sequential induction of cell cycle arrest, cell differentiation and autophagy. Such effects are not observed in normal cells (MRC-5) and thus, this specific activation of programmed cell death infers greater efficacy and lower toxicity to 2OHOA than that associated with temozolomide (TMZ), the reference drug for the treatment of glioma.


Asunto(s)
Autofagia/efectos de los fármacos , Glioma/patología , Ácidos Oléicos/farmacología , Esfingomielinas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Modelos Biológicos , Transducción de Señal/efectos de los fármacos
18.
Proc Natl Acad Sci U S A ; 109(22): 8489-94, 2012 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-22586083

RESUMEN

Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells before treatment. Parallel to membrane-lipid regulation, treatment with 2OHOA induced a dramatic translocation of Ras from the membrane to the cytoplasm, which inhibited the MAP kinase pathway, reduced activity of the PI3K/Akt pathway, and downregulated Cyclin D-CDK4/6 proteins followed by hypophosphorylation of the retinoblastoma protein (RB). These regulatory effects were associated with induction of glioma cell differentiation into mature glial cells followed by autophagic cell death. Given its high efficacy, low toxicity, ease of oral administration, and good distribution to the brain, 2OHOA constitutes a new and potentially valuable therapeutic tool for glioma patients.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Glioma/tratamiento farmacológico , Ácidos Oléicos/farmacología , Animales , Antineoplásicos/metabolismo , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacología , Relación Dosis-Respuesta a Droga , Glioma/metabolismo , Glioma/patología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Ratones , Ratones Desnudos , Microscopía Confocal , Ácidos Oléicos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Temozolomida , Factores de Tiempo , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas ras/metabolismo
19.
J Cell Mol Med ; 14(3): 659-70, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19413889

RESUMEN

Minerval is an oleic acid synthetic analogue that impairs lung cancer (A549) cell proliferation upon modulation of the plasma membrane lipid structure and subsequent regulation of protein kinase C localization and activity. However, this mechanism does not fully explain the regression of tumours induced by this drug in animal models of cancer. Here we show that Minerval also induced apoptosis in Jurkat T-lymphoblastic leukaemia and other cancer cells. Minerval inhibited proliferation of Jurkat cells, concomitant with a decrease of cyclin D3 and cdk2 (cyclin-dependent kinase2). In addition, the changes that induced on Jurkat cell membrane organization caused clustering (capping) of the death receptor Fas (CD95), caspase-8 activation and initiation of the extrinsic apoptosis pathway, which finally resulted in programmed cell death. The present results suggest that the intrinsic pathway (associated with caspase-9 function) was activated downstream by caspase-8. In a xenograft model of human leukaemia, Minerval also inhibited tumour progression and induced tumour cell death. Studies carried out in a wide variety of cancer cell types demonstrated that apoptosis was the main molecular mechanism triggered by Minerval. This is the first report on the pro-apoptotic activity of Minerval, and in part explains the effectiveness of this non-toxic anticancer drug and its wide spectrum against different types of cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Leucemia Experimental/tratamiento farmacológico , Ácidos Oléicos/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Caspasas/metabolismo , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclina D3/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Relación Dosis-Respuesta a Droga , Citometría de Flujo , Células HL-60 , Células HT29 , Células HeLa , Humanos , Immunoblotting , Células Jurkat , Leucemia Experimental/patología , Leucemia de Células T/metabolismo , Leucemia de Células T/patología , Masculino , Ratones , Ratones Desnudos , Neoplasias/metabolismo , Neoplasias/patología , Factores de Tiempo
20.
Proc Natl Acad Sci U S A ; 106(33): 13754-8, 2009 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-19666584

RESUMEN

alpha-Hydroxy-9-cis-octadecenoic acid, a synthetic fatty acid that modifies the composition and structure of lipid membranes. 2-Hydroxyoleic acid (HOA) generated interest due to its potent, yet nontoxic, anticancer activity. It induces cell cycle arrest in human lung cancer (A549) cells and apoptosis in human leukemia (Jurkat) cells. These two pathways may explain how HOA induces regression of a variety of cancers. We showed that HOA repressed the expression of dihydrofolate reductase (DHFR), the enzyme responsible for tetrahydrofolate (THF) synthesis. Folinic acid, which readily produces THF without the participation of DHFR, reverses the antitumor effects of HOA in A549 and Jurkat cells, as well as the inhibitory influence on cyclin D and cdk2 in A549 cells, and on DNA and PARP degradation in Jurkat cells. This effect was very specific, because either elaidic acid (an analog of HOA) or other lipids, failed to alter A549 or Jurkat cell growth. THF is a cofactor necessary for DNA synthesis. Thus, impairment of DNA synthesis appears to be a common mechanism involved in the different responses elicited by cancer cells following treatment with HOA, namely cell cycle arrest or apoptosis. Compared with other antifolates, such as methotrexate, HOA did not directly inhibit DHFR but rather, it repressed its expression, a mode of action that offers certain therapeutic advantages. These results not only demonstrate the effect of a fatty acid on the expression of DHFR, but also emphasize the potential of HOA to be used as a wide-spectrum drug against cancer.


Asunto(s)
Antineoplásicos/farmacología , Ácidos Oléicos/química , Tetrahidrofolato Deshidrogenasa/fisiología , Línea Celular Tumoral , Membrana Celular/metabolismo , Ácidos Grasos/química , Antagonistas del Ácido Fólico/farmacología , Humanos , Células Jurkat , Leucovorina/química , Lípidos/química , Metotrexato/farmacología , Neoplasias/tratamiento farmacológico , Ácidos Oléicos/farmacología , Especificidad por Sustrato , Tetrahidrofolato Deshidrogenasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...