Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1680, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38396028

RESUMEN

Although the domestic dog's origin is still unclear, this lineage is believed to have been domesticated from an extinct population of gray wolves, which is expected to be more closely related to dogs than to other populations of gray wolves. Here, we sequence the whole genomes of nine Japanese wolves (7.5-100x: Edo to Meiji periods) and 11 modern Japanese dogs and analyze them together with those from other populations of dogs and wolves. A phylogenomic tree shows that, among the gray wolves, Japanese wolves are closest to the dog, suggesting that the ancestor of dogs is closely related to the ancestor of the Japanese wolf. Based on phylogenetic and geographic relationships, the dog lineage has most likely originated in East Asia, where it diverged from a common ancestor with the Japanese wolf. Since East Eurasian dogs possess Japanese wolf ancestry, we estimate an introgression event from the ancestor of the Japanese wolf to the ancestor of the East Eurasian dog that occurred before the dog's arrival in the Japanese archipelago.


Asunto(s)
Lobos , Perros , Animales , Lobos/genética , Filogenia , Japón , ADN Mitocondrial/genética , Genoma
2.
Zoolog Sci ; 40(1): 24-31, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36744707

RESUMEN

DNA markers that detect differences in the number of microsatellite repeats can be highly effective for genotyping individuals that lack differences in external morphology. However, isolation of sequences with different microsatellite repeat numbers between individuals has been a time-consuming process in the development of DNA markers. Individual identification of Japanese giant flying squirrels (Petaurista leucogenys) has been challenging because this species is arboreal and nocturnal and exhibits little to no morphological variation between individuals. In this study, we developed DNA markers for sex and individual identification of this species by an efficient method using high-throughput DNA sequence data. Paired-end 5 Gb (2 × 250 bp) and 15 Gb (2 × 150 bp) genome sequences were determined from a female and a male Japanese giant flying squirrel, respectively. We searched SRY and XIST genes located on Y and X chromosomes, respectively, from high-throughput sequence data and designed primers to amplify these genes. Using these primer sets, we succeeded to identify the sex of individuals. In addition, we selected 12 loci containing microsatellites with different numbers of repeats between two individuals from the same data set, and designed primers to amplify these sequences. Twenty individuals from nine different locations were discriminated using these primer sets. Furthermore, both sex and microsatellite markers were amplified from DNA extracted non-invasively from single fecal pellet samples. Based on our results for flying squirrels, we expect our efficient method for developing non-invasive high-resolution individual- and sex-specific genotyping to be applicable to a diversity of mammalian species.


Asunto(s)
Genoma , Animales , Femenino , Humanos , Masculino , ADN , Marcadores Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Repeticiones de Microsatélite/genética , Sciuridae/genética
3.
J Exp Biol ; 225(23)2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36408938

RESUMEN

Light environments differ dramatically between day and night. The transition between diurnal and nocturnal visual ecology has happened repeatedly throughout evolution in many species. However, the molecular mechanism underlying the evolution of vision in recent diurnal-nocturnal transition is poorly understood. Here, we focus on hawkmoths (Lepidoptera: Sphingidae) to address this question by investigating five nocturnal and five diurnal species. We performed RNA-sequencing analysis and identified opsin genes corresponding to the ultraviolet (UV), short-wavelength (SW) and long-wavelength (LW)-absorbing visual pigments. We found no significant differences in the expression patterns of opsin genes between the nocturnal and diurnal species. We then constructed the phylogenetic trees of hawkmoth species and opsins. The diurnal lineages had emerged at least three times from the nocturnal ancestors. The evolutionary rates of amino acid substitutions in the three opsins differed between the nocturnal and diurnal species. We found an excess number of parallel amino acid substitutions in the opsins in three independent diurnal lineages. The numbers were significantly more than those inferred from neutral evolution, suggesting that positive selection acted on these parallel substitutions. Moreover, we predicted the visual pigment absorption spectra based on electrophysiologically determined spectral sensitivity in two nocturnal and two diurnal species belonging to different clades. In the diurnal species, the LW pigments shift 10 nm towards shorter wavelengths, and the SW pigments shift 10 nm in the opposite direction. Taken together, our results suggest that parallel evolution of opsins may have enhanced the colour discrimination properties of diurnal hawkmoths in ambient light.


Asunto(s)
Opsinas , Pigmentos Retinianos , Opsinas/genética , Filogenia , Pigmentos Retinianos/genética , Evolución Molecular , Opsinas de Bastones/genética , Opsinas de Bastones/química
4.
Sci Rep ; 12(1): 7593, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35534524

RESUMEN

Coat color is often highly variable within and between animal taxa. Among hundreds of pigmentation-related genes, melanocortin-1 receptor (MC1R) plays key roles in regulating the synthesis of the dark eumelanin and the red-yellow pheomelanin. The six species of macaques that inhabit Sulawesi Island diverged rapidly from their common ancestor, M. nemestrina. Unlike most macaques, Sulawesi macaques commonly have a dark coat color, with divergence in shade and color pattern. To clarify the genetic and evolutionary basis for coat color in Sulawesi macaques, we investigated the MC1R sequences and functional properties, including basal cAMP production and α-MSH-induced activity in vitro. We found fixed non-synonymous substitutions in MC1R in each species. Furthermore, we found that six species-specific variants corresponded with variation in agonist-induced and basal activity of MC1R. Inconsistent with the dark coat color, four substitutions independently caused decreases in the basal activity of MC1R in M. hecki, M. nigra, M. tonkeana, and M. ochreata. Selective analysis suggested MC1R of M. nigra and M. nigrescens underwent purifying selection. Overall, our results suggest that fixed differences in MC1R resulted in different functional characteristics and might contribute to divergence in color among the six Sulawesi macaque species.


Asunto(s)
Pigmentación , Receptor de Melanocortina Tipo 1 , Animales , Indonesia , Macaca/genética , Pigmentación/genética , Receptor de Melanocortina Tipo 1/genética
5.
Sci Rep ; 11(1): 23018, 2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34837037

RESUMEN

Reef-building corals are declining due to environmental changes. Sacsin is a member of the heat shock proteins and has been reported as a candidate protein associated with the stress response in Acropora corals. Recently, high nucleotide diversity and the persistence of two divergent haplogroups of sacsin-like genes in Acropora millepora have been reported. While it was not clear when the two haplogroups have split and whether the haplogroups have persisted in only A. millepora or the other lineages in the genus Acropora. In this study, we analyzed a genomic region containing a sacsin-like gene from Acropora and Montipora species. Higher nucleotide diversity in the sacsin-like gene compared with that of surrounding regions was also observed in A. digitifera. This nucleotide diversity is derived from two divergent haplogroups of a sacsin-like gene, which are present in at least three Acropora species. The origin of these two haplogroups can be traced back before the divergence of Acropora and Montipora (119 Ma). Although the link between exceptionally high genetic variation in sacsin-like genes and functional differences in sacsin-like proteins is not clear, the divergent haplogroups may respond differently to envionmental stressors and serve in the adaptive phsiological ecology of these keystone species.


Asunto(s)
Antozoos/genética , Proteínas de Choque Térmico/genética , Animales , Arrecifes de Coral , Variación Genética , Haplotipos , Filogenia
6.
BMC Res Notes ; 14(1): 387, 2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34627387

RESUMEN

OBJECTIVES: The mangrove cricket, Apteronemobius asahinai, shows endogenous activity rhythms that synchronize with the tidal cycle (i.e., a free-running rhythm with a period of ~ 12.4 h [the circatidal rhythm]). Little is known about the molecular mechanisms underlying the circatidal rhythm. We present the draft genome of the mangrove cricket to facilitate future molecular studies of the molecular mechanisms behind this rhythm. DATA DESCRIPTION: The draft genome contains 151,060 scaffolds with a total length of 1.68 Gb (N50: 27 kb) and 92% BUSCO completeness. We obtained 28,831 predicted genes, of which 19,896 (69%) were successfully annotated using at least one of two databases (UniProtKB/SwissProt database and Pfam database).


Asunto(s)
Gryllidae , Animales , Genoma , Gryllidae/genética
7.
Zoolog Sci ; 38(1): 60-66, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33639719

RESUMEN

The taxonomic status of extinct Japanese or Honshu wolves (Canis lupus hodophilax) has been disputed since the name hodophilax was first proposed by Temminck in 1839 on the basis of specimens stored in Leiden, the Netherlands. Points of controversy include whether the type specimen of hodophilax (Jentink c: RMNH.MAM.39181) and the other two specimens from Leiden (Jentink a: RMNH.MAM.39182 and Jentink b: RMNH.MAM.39183) represent different varieties or subspecies of Japanese wolves or not. Two Japanese names, ookami and jamainu, used to describe wild Canis species, further complicate the issue. In this study, the taxonomic status of Japanese wolves was clarified using mitochondrial DNA of the three specimens stored at the Naturalis Biodiversity Center in Leiden, in addition to three Japanese wolf specimens stored at the Museum für Naturkunde in Berlin and five new samples from Japan. The mitochondrial genomes of the type specimen of hodophilax (Jentink c) and another sample from Leiden (Jentink b) as well as Berlin specimens were included in the cluster of Japanese wolves distinct from other grey wolves. However, the other sample from Leiden (Jentink a) was identified as a domestic dog. A mitochondrial genome analysis suggested that Japanese wolves could be categorized into two distinct clusters. Studies of nuclear genomes are needed to further clarify the taxonomic status, divergence time, and population genetic structure of Japanese wolves.


Asunto(s)
Genoma Mitocondrial , Lobos/clasificación , Lobos/genética , Animales , Perros/genética , Japón , Filogenia , Análisis de Secuencia de ADN
8.
BMC Evol Biol ; 20(1): 158, 2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33243140

RESUMEN

BACKGROUND: Evolutionary transitions from terrestrial to aquatic life history cause drastic changes in sensory systems. Indeed, the drastic changes in vision have been reported in many aquatic amniotes, convergently. Recently, the opsin genes of the full-aquatic sea snakes have been reported. However, those of the amphibious sea snakes have not been examined in detail. RESULTS: Here, we investigated opsin genes and visual pigments of sea snakes. We determined the sequences of SWS1, LWS, and RH1 genes from one terrestrial, three amphibious and four fully-aquatic elapids. Amino acid replacements at four and one spectra-tuning positions were found in LWS and RH1, respectively. We measured or predicted absorption of LWS and RH1 pigments with A1-derived retinal. During their evolution, blue shifts of LWS pigments have occurred stepwise in amphibious sea snakes and convergently in both amphibious and fully-aquatic species. CONCLUSIONS: Blue shifted LWS pigments may have adapted to deep water or open water environments dominated by blue light. The evolution of opsins differs between marine mammals (cetaceans and pinnipeds) and sea snakes in two fundamental ways: (1) pseudogenization of opsins in marine mammals; and (2) large blue shifts of LWS pigments in sea snakes. It may be possible to explain these two differences at the level of photoreceptor cell composition given that cone and rod cells both exist in mammals whereas only cone cells exist in fully-aquatic sea snakes. We hypothesize that the differences in photoreceptor cell compositions may have differentially affected the evolution of opsins in divergent amniote lineages.


Asunto(s)
Organismos Acuáticos/genética , Hydrophiidae/genética , Opsinas/genética , Visión Ocular/genética , Animales , Células Fotorreceptoras Retinianas Conos/metabolismo
9.
BMC Genomics ; 21(1): 671, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32993496

RESUMEN

BACKGROUND: Symbiosis is central to ecosystems and has been an important driving force of the diversity of life. Close and long-term interactions are known to develop cooperative molecular mechanisms between the symbiotic partners and have often given them new functions as symbiotic entities. In lichen symbiosis, mutualistic relationships between lichen-forming fungi and algae and/or cyanobacteria produce unique features that make lichens adaptive to a wide range of environments. Although the morphological, physiological, and ecological uniqueness of lichens has been described for more than a century, the genetic mechanisms underlying this symbiosis are still poorly known. RESULTS: This study investigated the fungal-algal interaction specific to the lichen symbiosis using Usnea hakonensis as a model system. The whole genome of U. hakonensis, the fungal partner, was sequenced by using a culture isolated from a natural lichen thallus. Isolated cultures of the fungal and the algal partners were co-cultured in vitro for 3 months, and thalli were successfully resynthesized as visible protrusions. Transcriptomes of resynthesized and natural thalli (symbiotic states) were compared to that of isolated cultures (non-symbiotic state). Sets of fungal and algal genes up-regulated in both symbiotic states were identified as symbiosis-related genes. CONCLUSION: From predicted functions of these genes, we identified genetic association with two key features fundamental to the symbiotic lifestyle in lichens. The first is establishment of a fungal symbiotic interface: (a) modification of cell walls at fungal-algal contact sites; and (b) production of a hydrophobic layer that ensheaths fungal and algal cells;. The second is symbiosis-specific nutrient flow: (a) the algal supply of photosynthetic product to the fungus; and (b) the fungal supply of phosphorous and nitrogen compounds to the alga. Since both features are widespread among lichens, our result may indicate important facets of the genetic basis of the lichen symbiosis.


Asunto(s)
Chlorophyta/genética , Parmeliaceae/genética , Simbiosis/genética , Pared Celular/metabolismo , Chlorophyta/metabolismo , Genes Fúngicos , Genes de Plantas , Técnicas Microbiológicas , Nitrógeno/metabolismo , Parmeliaceae/metabolismo , Fósforo/metabolismo , Fotosíntesis , Transcriptoma
10.
BMC Genomics ; 21(1): 158, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32054446

RESUMEN

BACKGROUND: Despite the importance of characterizing genetic variation among coral individuals for understanding phenotypic variation, the correlation between coral genomic diversity and phenotypic expression is still poorly understood. RESULTS: In this study, we detected a high frequency of genes showing presence-absence polymorphisms (PAPs) for single-copy genes in Acropora digitifera. Among 10,455 single-copy genes, 516 (5%) exhibited PAPs, including 32 transposable element (TE)-related genes. Five hundred sixteen genes exhibited a homozygous absence in one (102) or more than one (414) individuals (n = 33), indicating that most of the absent alleles were not rare variants. Among genes showing PAPs (PAP genes), roughly half were expressed in adults and/or larvae, and the PAP status was associated with differential expression among individuals. Although 85% of PAP genes were uncharacterized or had ambiguous annotations, 70% of these genes were specifically distributed in cnidarian lineages in eumetazoa, suggesting that these genes have functional roles related to traits related to cnidarians or the family Acroporidae or the genus Acropora. Indeed, four of these genes encoded toxins that are usually components of venom in cnidarian-specific cnidocytes. At least 17% of A. digitifera PAP genes were also PAPs in A. tenuis, the basal lineage in the genus Acropora, indicating that PAPs were shared among species in Acropora. CONCLUSIONS: Expression differences caused by a high frequency of PAP genes may be a novel genomic feature in the genus Acropora; these findings will contribute to improve our understanding of correlation between genetic and phenotypic variation in corals.


Asunto(s)
Antozoos/genética , Dosificación de Gen , Genoma , Polimorfismo Genético , Animales , Clonación Molecular , Biología Computacional/métodos , Evolución Molecular , Genómica/métodos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN
11.
Ecol Evol ; 9(18): 10387-10403, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31624557

RESUMEN

ABSTRACT: Bitter perception is mediated by G protein-coupled receptors TAS2Rs and plays an important role in avoiding the ingestion of toxins by inducing innate avoidance behavior in mammals. One of the best-studied TAS2Rs is TAS2R38, which mediates the perception of the bitterness of synthetic phenylthiocarbamide (PTC). Previous studies of TAS2R38 have suggested that geographical separation enabled the independent divergence of bitter taste perception. The functional divergence of TAS2R38 in allopatric species has not been evaluated. We characterized the function of TAS2R38 in four allopatric species of Sulawesi macaques on Sulawesi Island. We found variation in PTC taste perception both within and across species. In most cases, TAS2R38 was sensitive to PTC, with functional divergence among species. We observed different truncated TAS2R38s that were not responsive to PTC in each species of Macaca nigra and M. nigrescens due to premature stop codons. Some variants of intact TAS2R38 with an amino acid substitution showed low sensitivity to PTC in M. tonkeana. Similarly, this intact TAS2R38 with PTC-low sensitivity has also been found in humans. We detected a shared haplotype in all four Sulawesi macaques, which may be the ancestral haplotype of Sulawesi macaques. In addition to shared haplotypes among Sulawesi macaques, other TAS2R38 haplotypes were species-specific. These results implied that the variation in TAS2R38 might be shaped by geographical patterns and local adaptation. OPEN RESEARCH BADGES: This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.908jf3r.

12.
Ecol Evol ; 9(11): 6389-6398, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31236229

RESUMEN

Although there are many examples of color evolution potentially driven by sensory drive, only few studies have examined whether distinct species inhabiting the same environments evolve similar body colors via shared sensory mechanisms. In this study, we tested whether two sympatric freshwater fish taxa, halfbeaks of the genus Nomorhamphus and ricefishes of the genus Oryzias in Sulawesi Island, converge in both body color and visual sensitivity. After reconstructing the phylogeny separately for Nomorhamphus and Oryzias using transcriptome-wide sequences, we demonstrated positive correlations of body redness between these two taxa across environments, even after phylogenetic corrections, which support convergent evolution. However, substantial differences were observed in the expression profiles of opsin genes in the eyes between Nomorhamphus and Oryzias. Particularly, the expression levels of the long wavelength-sensitive genes were negatively correlated between the taxa, indicating that they have different visual sensitivities despite living in similar light environments. Thus, the convergence of body colorations between these two freshwater fish taxa was not accompanied by convergence in opsin sensitivities. This system presents a case in which body color convergence can occur between sympatric species via different mechanisms.

13.
BMC Evol Biol ; 19(1): 68, 2019 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-30832572

RESUMEN

BACKGROUND: The molecular basis of the incipient stage of speciation is still poorly understood. Cichlid fish species in Lake Victoria are a prime example of recent speciation events and a suitable system to study the adaptation and reproductive isolation of species. RESULTS: Here, we report the pattern of genomic differentiation between two Lake Victoria cichlid species collected in sympatry, Haplochromis pyrrhocephalus and H. sp. 'macula,' based on the pooled genome sequences of 20 individuals of each species. Despite their ecological differences, population genomics analyses demonstrate that the two species are very close to a single panmictic population due to extensive gene flow. However, we identified 21 highly differentiated short genomic regions with fixed nucleotide differences. At least 15 of these regions contained genes with predicted roles in adaptation and reproductive isolation, such as visual adaptation, circadian clock, developmental processes, adaptation to hypoxia, and sexual selection. The nonsynonymous fixed differences in one of these genes, LWS, were reported as substitutions causing shift in absorption spectra of LWS pigments. Fixed differences were found in the promoter regions of four other differentially expressed genes, indicating that these substitutions may alter gene expression levels. CONCLUSIONS: These diverged short genomic regions may have contributed to the differentiation of two ecologically different species. Moreover, the origins of adaptive variants within the differentiated regions predate the geological formation of Lake Victoria; thus Lake Victoria cichlid species diversified via selection on standing genetic variation.


Asunto(s)
Cíclidos/genética , Especiación Genética , Animales , Secuencia de Bases , Flujo Génico , Genoma , Genómica , Lagos , Polimorfismo Genético , Especificidad de la Especie , Simpatría
14.
Sci Rep ; 9(1): 3719, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842498

RESUMEN

The mangrove cricket Apteronemobius asahinai is endemic to mangrove forest floors. It shows circatidal rhythmicity, with a 12.6-h period of locomotor activity under constant conditions. Its free-running activity also has a circadian component; i.e. it is more active during the subjective night than during the day. In this study, we investigated rhythmic gene expression under constant darkness by RNA sequencing to identify genes controlled by the biological clock. Samples collected every 3 h for 48 h were analysed (one cricket per time-point). We identified 284 significant circatidal cycling transcripts (period length 12-15 h). Almost half of them were annotated with known genes in the NCBI nr database, including enzymes related to metabolic processes and molecular chaperones. There were less transcripts with circadian rhythmicity than with circatidal rhythmicity, and the expression of core circadian clock genes did not show significant rhythmicity. This may reflect the nature of the mangrove cricket or may be due to the paucity of the sampling repeats: only two periods for circadian cycle with no replications. We evaluated for the first time the rhythmic transcriptome of an insect that shows circatidal rhythmic activity; our findings will contribute to future studies of circatidal clock genes.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Gryllidae/fisiología , Proteínas de Insectos/genética , Animales , Ritmo Circadiano , Femenino , Regulación de la Expresión Génica , Gryllidae/genética , Anotación de Secuencia Molecular , Periodicidad , Análisis de Secuencia de ARN
15.
Genome Biol Evol ; 11(3): 613-628, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30657921

RESUMEN

Human skin is morphologically and physiologically different from the skin of other primates. However, the genetic causes underlying human-specific skin characteristics remain unclear. Here, we quantitatively demonstrate that the epidermis and dermis of human skin are significantly thicker than those of three Old World monkey species. In addition, we indicate that the topography of the epidermal basement membrane zone shows a rete ridge in humans but is flat in the Old World monkey species examined. Subsequently, we comprehensively compared gene expression levels between human and nonhuman great ape skin using next-generation cDNA sequencing (RNA-Seq). We identified four structural protein genes associated with the epidermal basement membrane zone or elastic fibers in the dermis (COL18A1, LAMB2, CD151, and BGN) that were expressed significantly greater in humans than in nonhuman great apes, suggesting that these differences may be related to the rete ridge and rich elastic fibers present in human skin. The rete ridge may enhance the strength of adhesion between the epidermis and dermis in skin. This ridge, along with a thick epidermis and rich elastic fibers might contribute to the physical strength of human skin with a low amount of hair. To estimate transcriptional regulatory regions for COL18A1, LAMB2, CD151, and BGN, we examined conserved noncoding regions with histone modifications that can activate transcription in skin cells. Human-specific substitutions in these regions, especially those located in binding sites of transcription factors which function in skin, may alter the gene expression patterns and give rise to the human-specific adaptive skin characteristics.


Asunto(s)
Hominidae/metabolismo , Piel/metabolismo , Adaptación Biológica , Animales , Biglicano/metabolismo , Cercopithecidae/anatomía & histología , Colágeno Tipo VIII/metabolismo , Colágeno Tipo XVIII , Regulación de la Expresión Génica , Hominidae/anatomía & histología , Hominidae/genética , Humanos , Laminina/metabolismo , Piel/anatomía & histología , Especificidad de la Especie , Tetraspanina 24/metabolismo
16.
J Exp Biol ; 221(Pt 21)2018 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-30190317

RESUMEN

Histamine is the only known neurotransmitter released by arthropod photoreceptors. Synaptic transmission from photoreceptors to second-order neurons is mediated by the activation of histamine-gated chloride channels (HCLs). These histaminergic synapses have been assumed to be conserved among insect visual systems. However, our understanding of the channels in question has thus far been based on studies in flies. In the butterfly Papilio xuthus, we have identified two candidate histamine-gated chloride channels, PxHCLA and PxHCLB, and studied their physiological properties using a whole-cell patch-clamp technique. We studied the responses of channels expressed in cultured cells to histamine as well as to other neurotransmitter candidates, namely GABA, tyramine, serotonin, d-/l-glutamate and glycine. We found that histamine and GABA activated both PxHCLA and PxHCLB, while the other molecules did not. The sensitivity to histamine and GABA was consistently higher in PxHCLB than in PxHCLA. Interestingly, simultaneous application of histamine and GABA activated both PxHCLA and PxHCLB more strongly than either neurotransmitter individually; histamine and GABA may have synergistic effects on PxHCLs in the regions where they co-localize. Our results suggest that the physiological properties of the histamine receptors are basically conserved among insects, but that the response to GABA differs between butterflies and flies, implying variation in early visual processing among species.


Asunto(s)
Mariposas Diurnas/fisiología , Receptores Histamínicos/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Mariposas Diurnas/genética , Canales de Cloruro/fisiología , Femenino , Células HEK293 , Histamina/farmacología , Humanos , Masculino , Neurotransmisores/farmacología , Técnicas de Placa-Clamp , Transfección , Ácido gamma-Aminobutírico/farmacología
17.
Genome Biol Evol ; 10(7): 1715-1729, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-30016429

RESUMEN

Despite many hypotheses regarding the roles of fluorescent proteins (FPs), their biological roles and the genetic basis of FP-mediated color polymorphisms in Acropora remain unclear. In this study, we determined the genetic mechanism underlying fluorescent polymorphisms in A. digitifera. Using a high-throughput sequencing approach, we found that FP gene sequences in FP multigene family exhibit presence-absence polymorphism among individuals. A few particular sequences in short-to-middle wavelength emission and middle-to-long wavelength emission clades were highly expressed in adults, and different sequences were highly expressed in larvae. These highly expressed sequences were absent in the genomes of individuals with low total FP gene expression. In adults, presence-absence differences of the highly expressed FP sequences were consistent with measurements of emission spectra of corals, suggesting that presence-absence polymorphisms of these FP sequences contributed to the fluorescent polymorphisms. The functions of recombinant FPs encoded by highly expressed sequences in adult and larval stages were different, suggesting that expression of FP sequences with different functions may depend on the life-stage of A. digitifera. Highly expressed FP sequences exhibited presence-absence polymorphisms in subpopulations of A. digitifera, suggesting that presence-absence status is maintained during the evolution of A. digitifera subpopulations. The difference in FPs between adults and larvae and the polymorphisms of highly expressed FP genes may provide key insight into the biological roles of FPs in corals.


Asunto(s)
Antozoos/genética , Proteínas Luminiscentes/genética , Polimorfismo Genético , Animales , Antozoos/crecimiento & desarrollo , Evolución Molecular , Exones , Fluorescencia , Dosificación de Gen , Expresión Génica , Biblioteca de Genes , Familia de Multigenes , Filogenia , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
18.
BMC Evol Biol ; 17(1): 200, 2017 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-28830359

RESUMEN

BACKGROUND: For Lake Victoria cichlid species inhabiting rocky substrates with differing light regimes, it has been proposed that adaptation of the long-wavelength-sensitive (LWS) opsin gene triggered speciation by sensory drive through color signal divergence. The extensive and continuous sand/mud substrates are also species-rich, and a correlation between male nuptial coloration and the absorption of LWS pigments has been reported. However, the factors driving genetic and functional diversity of LWS pigments in sand/mud habitats are still unresolved. RESULTS: To address this issue, nucleotide sequences of eight opsin genes were compared in ten Lake Victoria cichlid species collected from sand/mud bottoms. Among eight opsins, the LWS and rod-opsin (RH1) alleles were diversified and one particular allele was dominant or fixed in each species. Natural selection has acted on and fixed LWS alleles in each species. The functions of LWS and RH1 alleles were measured by absorption of reconstituted A1- and A2-derived visual pigments. The absorption of pigments from RH1 alleles most common in deep water were largely shifted toward red, whereas those of LWS alleles were largely shifted toward blue in both A1 and A2 pigments. In both RH1 and LWS pigments, A2-derived pigments were closer to the dominant light in deep water, suggesting the possibility of the adaptation of A2-derived pigments to depth-dependent light regimes. CONCLUSIONS: The RH1 and LWS sequences may be diversified for adaptation of A2-derived pigments to different light environments in sand/mud substrates. Diversification of the LWS alleles may have originally taken place in riverine environments, with a new mutation occurring subsequently in Lake Victoria.


Asunto(s)
Adaptación Ocular , Cíclidos/fisiología , Percepción de Profundidad/fisiología , Proteínas del Ojo/metabolismo , Sedimentos Geológicos , Lagos , Pigmentación/genética , Alelos , Animales , Secuencia de Bases , Color , Evolución Molecular , Geografía , Masculino , Especificidad de la Especie
19.
Microbiology (Reading) ; 163(5): 678-691, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28535846

RESUMEN

Recent progress in molecular techniques has begun to alter traditional recognition of lichens as symbiotic organisms comprised of a fungus and photosynthetic partners (green algae and/or cyanobacteria). Diverse organisms, especially various non-photosynthetic bacteria, are now indicated to be integral components of lichen symbiosis. Although lichen-associated bacteria are inferred to have functions that could support the symbiosis, little is known about their physical and nutritional interaction with fungi and algae. In the present study, we identified specific interaction between a lichen-forming alga and a novel bacterium. Trebouxia alga was isolated from a lichen, Usnea hakonensis, and kept as a strain for 8 years. Although no visible bacterial colonies were observed in this culture, high-throughput sequencing of DNA isolated from the culture revealed that the strain is composed of a Trebouxia alga and an Alphaproteobacterium species. In situ hybridization showed that bacterial cells were localized on the surface of the algal cells. Physiological assays revealed that the bacterium was able to use ribitol, glucose and mannitol, all of which are known to exist abundantly in lichens. It was resistant to three antibiotics. Bacteria closely related to this species were also identified in lichen specimens, indicating that U. hakonensis may commonly associate with this group of bacteria. These features of the novel bacterium suggest that it may be involved in carbon cycling of U. hakonensis as a member of lichen symbiosis and less likely to have become associated with the alga after isolation from a lichen.


Asunto(s)
Alphaproteobacteria/clasificación , Alphaproteobacteria/metabolismo , Chlorophyta/metabolismo , Simbiosis/fisiología , Alphaproteobacteria/genética , Chlorophyta/genética , ADN Bacteriano/genética , ADN de Plantas/genética , Glucosa/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Líquenes/microbiología , Manitol/metabolismo , Filogenia , Ribitol/metabolismo , Análisis de Secuencia de ADN
20.
Ecol Evol ; 7(24): 10675-10682, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29299247

RESUMEN

Sex allocation theory predicts that parents bias the offspring sex ratio strategically. In avian species, the offspring sex ratio can be biased at multiple growth stages, although the mechanisms are not well known. It is crucial to reveal a cause and timing of biased offspring sex ratio. We investigated (i) offspring sex ratio at multiple growth stages, from laying to fledging; and (ii) the stage at which offspring sex ratio became biased; and (iii) the cause of biased offspring sex ratio in Eurasian tree sparrows Passer montanus. Sex determination of 218 offspring, including hatchlings and unhatched eggs from 41 clutches, suggested that the offspring sex ratio was not biased at the egg-laying stage but was significantly female-biased after the laying stage due to higher mortality of male embryos. Half of the unhatched eggs showed no sign of embryo development (37/74, 50.00%), and most undeveloped eggs were male (36/37, 97.30%). Additional experiments using an incubator suggested that the cause of embryo developmental failure was a lack of developmental ability within the egg, rather than a failure of incubation. This study highlights the importance of clarifying offspring sex ratio at multiple stages and suggests that offspring sex ratio is adjusted after fertilization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...