Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Front Immunol ; 14: 1268453, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38022552

RESUMEN

Introduction: Gut microbial imbalance (dysbiosis) has been reported in patients with acute Kawasaki disease (KD). However, no studies have analyzed the gut microbiota while focusing on susceptibility to KD. This study aimed to evaluate whether dysbiosis elevates susceptibility to KD by assessing children with a history of KD. Methods: Fecal DNA was extracted from 26 children with a history of KD approximately 1 year prior (KD group, 12 boys; median age, 32.5 months; median time from onset, 11.5 months) and 57 age-matched healthy controls (HC group, 35 boys; median age, 36.0 months). 16S rRNA gene analysis was conducted with the Illumina Miseq instrument. Sequence reads were analyzed using QIIME2. Results: For alpha diversity, Faith's phylogenetic diversity was significantly higher in the KD group. Regarding beta diversity, the two groups formed significantly different clusters based on Bray-Curtis dissimilarity. Comparing microbial composition at the genus level, the KD and HC groups were significantly different in the abundance of two genera with abundance over 1% after Benjamini-Hochberg false discovery rate correction for multiple comparisons. Compared with the HC group, the KD group had higher relative abundance of Ruminococcus gnavus group and lower relative abundance of Blautia. Discussion and conclusion: Ruminococcus gnavus group reportedly includes pro-inflammatory bacteria. In contrast, Blautia suppresses inflammation via butyrate production. In the predictive functional analysis, the proportion of gut microbiota involved in several pathways was lower in the KD group. Therefore, dysbiosis characterized by distinct microbial diversity and decreased abundance of Blautia in parallel with increased abundance of Ruminococcus gnavus group might be a susceptibility factor for KD.


Asunto(s)
Microbioma Gastrointestinal , Síndrome Mucocutáneo Linfonodular , Masculino , Niño , Humanos , Preescolar , Microbioma Gastrointestinal/genética , Disbiosis/microbiología , ARN Ribosómico 16S/genética , Síndrome Mucocutáneo Linfonodular/genética , Filogenia , Enfermedad Aguda , Ruminococcus/genética
2.
Metabolites ; 11(12)2021 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-34940645

RESUMEN

Neonatal jaundice, caused by excess serum bilirubin levels, is a common condition in neonates. Imbalance in the gut microbiota is believed to play a role in the development of neonatal jaundice. Thus, we aimed to reveal the gut microbiota characteristics in neonates with jaundice. 16S rRNA gene sequencing was performed on stool samples collected on day 4 from 26 neonates with jaundice (serum total bilirubin > 15.0 mg/dL) and 17 neonates without jaundice (total serum bilirubin < 10.0 mg/dL). All neonates were born full term, with normal weight, by vaginal delivery, and were breastfed. Neonates who were administered antibiotics, had serum direct bilirubin levels above 1 mg/dL, or had conditions possibly leading to hemolytic anemia were excluded. The median serum bilirubin was 16.0 mg/dL (interquartile range: 15.5-16.8) and 7.4 mg/dL (interquartile range: 6.8-8.3) for the jaundice and non-jaundice groups, respectively. There was no difference in the alpha diversity indices. Meanwhile, in the jaundice group, linear discriminant analysis effect size revealed that Bifidobacteriales were decreased at the order level, while Enterococcaceae were increased and Bifidobacteriaceae were decreased at the family level. Bifidobacteriaceae may act preventatively because of their suppressive effect on beta-glucuronidase, leading to accelerated deconjugation of conjugated bilirubin in the intestine. In summary, neonates with jaundice had dysbiosis characterized by a decreased abundance of Bifidobacteriales.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA