Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Dev Dyn ; 252(2): 247-262, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36057940

RESUMEN

BACKGROUND: The developing zebrafish ventricle generates higher intraventricular pressure (IVP) with increasing stroke volume and cardiac output at different developmental stages to meet the metabolic demands of the rapidly growing embryo (Salehin et al. Ann Biomed Eng, 2021;49(9): 2080-2093). To understand the changing role of the developing embryonic heart, we studied its biomechanical characteristics during in vivo cardiac cycles. By combining changes in wall strains and IVP measurements, we assessed ventricular wall stiffness during diastolic filling and the ensuing systolic IVP-generation capacity during 3-, 4-, and 5-day post fertilization (dpf). We further examined the anisotropy of wall deformation, in different regions within the ventricle, throughout a complete cardiac cycle. RESULTS: We found the ventricular walls grow increasingly stiff during diastolic filling with a corresponding increase in IVP-generation capacity from 3- to 4- and 5-dpf groups. In addition, we found the corresponding increasing level of anisotropic wall deformation through cardiac cycles that favor the latitudinal direction, with the most pronounced found in the equatorial region of the ventricle. CONCLUSIONS: From 3- to 4- and 5-dpf groups, the ventricular wall myocardium undergoes increasing level of anisotropic deformation. This, in combination with the increasing wall stiffness and IVP-generation capacity, allows the developing heart to effectively pump blood to meet the rapidly growing embryo's needs.


Asunto(s)
Corazón , Pez Cebra , Animales , Anisotropía , Ventrículos Cardíacos , Gasto Cardíaco
2.
iScience ; 25(9): 104876, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36034231

RESUMEN

In vivo quantitative assessment of structural and functional biomarkers is essential for characterizing the pathophysiology of congenital disorders. In this regard, fixed tissue analysis has offered revolutionary insights into the underlying cellular architecture. However, histological analysis faces major drawbacks with respect to lack of spatiotemporal sampling and tissue artifacts during sample preparation. This study demonstrates the potential of light sheet fluorescence microscopy (LSFM) as a non-invasive, 4D (3days + time) optical sectioning tool for revealing cardiac mechano-transduction in zebrafish. Furthermore, we have described the utility of a scale and size-invariant feature detector, for analyzing individual morphology of fused cardiomyocyte nuclei and characterizing zebrafish ventricular contractility.

3.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163562

RESUMEN

Optical microscopy has vastly expanded the frontiers of structural and functional biology, due to the non-invasive probing of dynamic volumes in vivo. However, traditional widefield microscopy illuminating the entire field of view (FOV) is adversely affected by out-of-focus light scatter. Consequently, standard upright or inverted microscopes are inept in sampling diffraction-limited volumes smaller than the optical system's point spread function (PSF). Over the last few decades, several planar and structured (sinusoidal) illumination modalities have offered unprecedented access to sub-cellular organelles and 4D (3D + time) image acquisition. Furthermore, these optical sectioning systems remain unaffected by the size of biological samples, providing high signal-to-noise (SNR) ratios for objective lenses (OLs) with long working distances (WDs). This review aims to guide biologists regarding planar illumination strategies, capable of harnessing sub-micron spatial resolution with a millimeter depth of penetration.


Asunto(s)
Imagenología Tridimensional/instrumentación , Imagen Individual de Molécula/instrumentación , Imagen de Lapso de Tiempo/instrumentación , Iluminación , Microscopía Fluorescente , Relación Señal-Ruido
4.
Ann Biomed Eng ; 49(9): 2080-2093, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33532949

RESUMEN

During embryogenesis, the developing heart transforms from a linear peristaltic tube into a multi-chambered pulsatile pump with blood flow-regulating valves. In this work, we report how hemodynamic parameters evolve during the heart's development, leading to its rhythmic pumping and blood flow regulation as a functioning organ. We measured the time course of intra-ventricular pressure from zebrafish embryos at 3, 4, and 5 days post fertilization (dpf) using the servo null method. We also measured the ventricular volume and monitored the opening/closing activity of the AV and VB valves using 4D selective plane illumination microscopy (SPIM). Our results revealed significant increases in peak systolic pressure, stroke volume and work, cardiac output, and power generation, and a total peripheral resistance decrease from zebrafish at 4, 5 dpf versus 3 dpf. These data illustrate that the early-stage zebrafish heart's increasing efficiency is synchronous with the expected changes in valve development, chamber morphology and increasing vascular network complexity. Such physiological measurements in tractable laboratory model organisms are critical for understanding how gene variants may affect phenotype. As the zebrafish emerges as a leading biomedical model organism, the ability to effectively measure its physiology is critical to its translational relevance.


Asunto(s)
Corazón/embriología , Corazón/fisiología , Animales , Animales Modificados Genéticamente , Embrión no Mamífero , Hemodinámica , Pez Cebra
5.
APL Bioeng ; 4(3): 036103, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32637858

RESUMEN

Light-sheet fluorescence microscopy (LSFM) provides access to multi-dimensional and multi-scale in vivo imaging of animal models with highly coherent volumetric reconstruction of the tissue morphology, via a focused laser light sheet. The orthogonal illumination and detection LSFM pathways account for minimal photobleaching and deep tissue optical sectioning through different perspective views. Although rotation of the sample and deep tissue scanning constitutes major advantages of LSFM, images may suffer from intrinsic problems within the modality, such as light mismatch of refractive indices between the sample and mounting media and varying quantum efficiency across different depths. To overcome these challenges, we hereby introduce an illumination correction technique integrated with depth detail amelioration to achieve symmetric contrast in large field-of-view images acquired using a low power objective lens. Due to an increase in angular dispersion of emitted light flux with the depth, we combined the dehazing algorithm with morphological operations to enhance poorly separated overlapping structures with subdued intensity. The proposed method was tested on different LSFM modalities to illustrate its applicability on correcting anisotropic illumination affecting the volumetric reconstruction of the fluorescently tagged region of interest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...