Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Cell Rep ; 42(8): 113005, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37590143

RESUMEN

The intricate interplay between gut microbes and the onset of experimental autoimmune encephalomyelitis (EAE) remains poorly understood. Here, we uncover remarkable similarities between CD4+ T cells in the spinal cord and their counterparts in the small intestine. Furthermore, we unveil a synergistic relationship between the microbiota, particularly enriched with the tryptophan metabolism gene EC:1.13.11.11, and intestinal cells. This symbiotic collaboration results in the biosynthesis of kynurenic acid (KYNA), which modulates the recruitment and aggregation of GPR35-positive macrophages. Subsequently, a robust T helper 17 (Th17) immune response is activated, ultimately triggering the onset of EAE. Conversely, modulating the KYNA-mediated GPR35 signaling in Cx3cr1+ macrophages leads to a remarkable amelioration of EAE. These findings shed light on the crucial role of microbial-derived tryptophan metabolites in regulating immune responses within extraintestinal tissues.


Asunto(s)
Encefalitis , Encefalomielitis Autoinmune Experimental , Microbioma Gastrointestinal , Animales , Ácido Quinurénico , Triptófano , Macrófagos
2.
Cell Mol Gastroenterol Hepatol ; 16(6): 1011-1031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37567385

RESUMEN

BACKGROUND & AIMS: D-amino acids, the chiral counterparts of protein L-amino acids, were primarily produced and utilized by microbes, including those in the human gut. However, little was known about how orally administered or microbe-derived D-amino acids affected the gut microbial community or gut disease progression. METHODS: The ratio of D- to L-amino acids was analyzed in feces and blood from patients with ulcerative colitis (UC) and healthy controls. Also, composition of microbe was analyzed from patients with UC. Mice were treated with D-amino acid in dextran sulfate sodium colitis model and liver cholangitis model. RESULTS: The ratio of D- to L-amino acids was lower in the feces of patients with UC than that of healthy controls. Supplementation of D-amino acids ameliorated UC-related experimental colitis and liver cholangitis by inhibiting growth of Proteobacteria. Addition of D-alanine, a major building block for bacterial cell wall formation, to culture medium inhibited expression of the ftsZ gene required for cell fission in the Proteobacteria Escherichia coli and Klebsiella pneumoniae, thereby inhibiting growth. Overexpression of ftsZ restored growth of E. coli even when D-alanine was present. We found that D-alanine not only inhibited invasion of pathological K. pneumoniae into the host via pore formation in intestinal epithelial cells but also inhibited growth of E. coli and generation of antibiotic-resistant strains. CONCLUSIONS: D-amino acids might have potential for use in novel therapeutic approaches targeting Proteobacteria-associated dysbiosis and antibiotic-resistant bacterial diseases by means of their effects on the intestinal microbiota community.


Asunto(s)
Colangitis , Colitis Ulcerosa , Colitis , Enfermedades Inflamatorias del Intestino , Humanos , Animales , Ratones , Aminoácidos , Proteobacteria , Escherichia coli , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Alanina , Colangitis/tratamiento farmacológico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
3.
Nat Commun ; 14(1): 5152, 2023 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-37620389

RESUMEN

Intestinal intraepithelial lymphocytes (IELs) reside in the gut epithelial layer, where they help in maintaining intestinal homeostasis. Peripheral CD4+ T cells can develop into CD4+CD8αα+ IELs upon arrival at the gut epithelium via the lamina propria (LP). Although this specific differentiation of T cells is well established, the mechanisms preventing it from occurring in the LP remain unclear. Here, we show that chemokine receptor 9 (CCR9) expression is low in epithelial CD4+CD8αα+ IELs, but CCR9 deficiency results in CD4+CD8αα+ over-differentiation in both the epithelium and the LP. Single-cell RNA sequencing shows an enriched precursor cell cluster for CD4+CD8αα+ IELs in Ccr9-/- mice. CD4+ T cells isolated from the epithelium of Ccr9-/- mice also display increased expression of Cbfß2, and the genomic occupancy modification of Cbfß2 expression reveals its important function in CD4+CD8αα+ differentiation. These results implicate a link between CCR9 downregulation and Cbfb2 splicing upregulation to enhance CD4+CD8αα+ IEL differentiation.


Asunto(s)
Linfocitos Intraepiteliales , Receptores CCR , Animales , Ratones , Diferenciación Celular , Regulación hacia Abajo , Epitelio , Regulación hacia Arriba , Receptores CCR/metabolismo
4.
Nat Commun ; 14(1): 3261, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37277351

RESUMEN

Primary sclerosing cholangitis (PSC) is characterized by progressive biliary inflammation and fibrosis. Although gut commensals are associated with PSC, their causative roles and therapeutic strategies remain elusive. Here we detect abundant Klebsiella pneumoniae (Kp) and Enterococcus gallinarum in fecal samples from 45 PSC patients, regardless of intestinal complications. Carriers of both pathogens exhibit high disease activity and poor clinical outcomes. Colonization of PSC-derived Kp in specific pathogen-free (SPF) hepatobiliary injury-prone mice enhances hepatic Th17 cell responses and exacerbates liver injury through bacterial translocation to mesenteric lymph nodes. We developed a lytic phage cocktail that targets PSC-derived Kp with a sustained suppressive effect in vitro. Oral administration of the phage cocktail lowers Kp levels in Kp-colonized germ-free mice and SPF mice, without off-target dysbiosis. Furthermore, we demonstrate that oral and intravenous phage administration successfully suppresses Kp levels and attenuates liver inflammation and disease severity in hepatobiliary injury-prone SPF mice. These results collectively suggest that using a lytic phage cocktail shows promise for targeting Kp in PSC.


Asunto(s)
Colangitis Esclerosante , Terapia de Fagos , Animales , Ratones , Colangitis Esclerosante/terapia , Klebsiella pneumoniae , Hígado/patología , Inflamación/patología
5.
JHEP Rep ; 5(7): 100757, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37305442

RESUMEN

Background & Aims: B-cell depletion therapy with an anti-CD20 is an effective treatment strategy for patients with refractory autoimmune hepatitis (AIH). However, the mechanisms underlying B-cell action are unclear. Methods: Herein, we used the adeno-associated virus IL-12 model, in which hepatic IL-12 expression triggers liver injuries characteristic of AIH. We also analysed the clinical samples of patients with AIH. Results: B-cell depletion using anti-CD20 or splenectomy was found to improve liver functions and decrease the cytotoxic CD8+ T-cell (cytotoxic T lymphocyte [CTL]) count in the liver. This improvement was reversed by the adoptive transfer of splenic B cells derived from AAV IL-12-treated mice to splenectomised mice as it caused the hepatic CTL count to increase. RNA-sequencing analysis identified IL-15 as a key factor in pathogenic B cells, which promotes CTL expansion and subsequent migration to the liver via the CXCL9/CXCR3 axis. Indeed, IL-15 neutralisation ameliorated hepatitis by suppressing splenic and hepatic CTLs in vivo. The close distribution of B220+ B cells and CD8+ T cells in the spleen of AIH mice suggested mutual interactions. Mechanistically, IFNγ and CD40L/CD40 signalling were indispensable for the expression of IL-15 in B cells, and in vitro co-culture experiments revealed that splenic CD40L+CD8+ T cells promoted IL-15 production in B cells, which led to CTL expansion. In patients with AIH, high serum IL-15 concentration and IL-15+ B-cell counts, positively correlating with serum alanine aminotransferase levels, support translation and potential therapeutic targeting in human AIH. Conclusions: This investigation elucidated the roles of IL-15-producing splenic B cells that occur in concert with pathogenic CD8+ T cells during the development of AIH. Impact and Implications: IL-15-producing B cells were shown to exacerbate experimental AIH via cytotoxic T lymphocyte expansion. CD40L+CD8+ T cells promoted IL-15 expression in B cells, indicating the mutual interaction of both cells. High serum IL-15 concentrations, IL-15+ B-cell counts, and CD40L+IL-15Rα+CD8+ T-cell counts were confirmed in the blood of patients with AIH.

6.
iScience ; 26(3): 106220, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36876136

RESUMEN

The fate of resolution of liver fibrosis after withdrawal of liver injury is still incompletely elucidated. Toll-like receptor 4 (TLR4) in tissue fibroblasts is pro-fibrogenic. After withdrawal of liver injury, we unexpectedly observed a significant delay of fibrosis resolution as TLR4 signaling was pharmacologically inhibited in vivo in two murine models. Single-cell transcriptome analysis of hepatic CD11b+ cells, main producers of matrix metalloproteinases (MMPs), revealed a prominent cluster of restorative Tlr4-expressing Ly6c2-low myeloid cells. Delayed resolution after gut sterilization suggested its microbiome-dependent nature. Enrichment of a metabolic pathway linking to a significant increase of bile salt hydrolase-possessing family Erysipelotrichaceae during resolution. Farnesoid X receptor-stimulating secondary bile acids including 7-oxo-lithocholic acids upregulated MMP12 and TLR4 in myeloid cells in vitro. Fecal material transplant in germ-free mice confirmed phenotypical correlations in vivo. These findings highlight a pro-fibrolytic role of myeloid TLR4 signaling after injury withdrawal and may provide targets for anti-fibrotic therapy.

7.
Front Immunol ; 13: 977117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353619

RESUMEN

Cytotoxic CD4+ T cells (CD4-CTLs) show the presence of cytolytic granules, which include the enzymes granzyme and perforin. The cells have a pathogenic and protective role in various diseases, including cancer, viral infection, and autoimmune disease. In mice, cytotoxic CD4+ T cells express CD8αα+ and reside in the intestine (mouse CD4+CTLs; mCD4-CTLs). The population of cytotoxic CD4+ T cells in the human intestine is currently unknown. Moreover, it is unclear how cytotoxic CD4 T cells change in patients with inflammatory bowel disease (IBD). Here, we aimed to identify cytotoxic CD4+ T cells in the human intestine and analyze the characteristics of the population in patients with IBD using single-cell RNA-seq (scRNA-seq). In CD4+ T cells, granzyme and perforin expression was high in humanMAIT (hMAIT) cells and hCD4+CD8A+ T cell cluster. Both CD4 and CD8A were expressed in hTreg, hMAIT, and hCD4+CD8A+ T cell clusters. Next we performed fast gene set enrichment analysis to identify cell populations that showed homology to mCD4CTLs. The analysis identified the hCD4+CD8A+ T cell cluster (hCTL-like population; hCD4-CTL) similar to mouse CTLs. The percentage of CD4+CD8A+ T cells among the total CD4+ T cells in the inflamed intestine of the patients with Crohn's disease was significantly reduced compared with that in the noninflamed intestine of the patients. In summary, we identified cytotoxic CD4+CD8+ T cells in the small intestine of humans. The integration of the mouse and human sc-RNA-seq data analysis highlight an approach to identify human cell populations related to mouse cell populations, which may help determine the functional properties of several human cell populations in mice.


Asunto(s)
Linfocitos T CD8-positivos , Enfermedades Inflamatorias del Intestino , Animales , Humanos , Ratones , Linfocitos T CD4-Positivos , Granzimas/genética , Granzimas/metabolismo , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/metabolismo , Perforina/genética , Perforina/metabolismo , Transcriptoma , Intestinos/inmunología , Linfocitos T Citotóxicos/inmunología
8.
Front Immunol ; 13: 982827, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36268010

RESUMEN

Group 2 innate lymphoid cells (ILC2s) serve as frontline defenses against parasites. However, excluding helminth infections, it is poorly understood how ILC2s function in intestinal inflammation, including inflammatory bowel disease. Here, we analyzed the global gene expression of ILC2s in healthy and colitic conditions and revealed that type I interferon (T1IFN)-stimulated genes were up-regulated in ILC2s in dextran sodium sulfate (DSS)-induced colitis. The enhancement of T1IFN signaling in ILC2s in DSS-induced colitis was correlated with the downregulation of cytokine production by ILC2s, such as interleukin-5. Blocking T1IFN signaling during colitis resulted in exaggeration of colitis in both wild-type and Rag2-deficient mice. The exacerbation of colitis induced by neutralization of T1IFN signaling was accompanied by reduction of amphiregulin (AREG) in ILC2s and was partially rescued by exogenous AREG treatment. Collectively, these findings show the potential roles of T1IFN in ILC2s that contribute to colitis manifestation.


Asunto(s)
Colitis , Interferón Tipo I , Ratones , Animales , Inmunidad Innata , Anfirregulina , Interleucina-5 , Ratones Noqueados , Linfocitos , Colitis/inducido químicamente , Sulfato de Dextran/toxicidad
9.
JCI Insight ; 7(17)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35943802

RESUMEN

Plasmacytoid dendritic cells (pDCs) perform dual proinflammatory and immunosuppressive roles. We recently reported the potential of pDC therapy for treatment of intractable acute liver failure. However, establishment of efficient methods to deliver pDCs to the liver is essential for future clinical therapeutic applications. The present study demonstrates a higher abundance of liver and peripheral blood pDCs in mice lacking C-C motif chemokine receptor 9 (CCR9), a pDC gut-homing receptor, than in WT mice. Adoptive transfer of Ccr9-/- pDCs resulted in a higher efficiency of migration to the liver than WT pDCs did, while WT pDCs migrated efficiently to the original target organ, the small intestine. Further, Ccr9-/- pDCs consistently migrated efficiently to livers with concanavalin A-induced inflammation, and exerted a more effective immunosuppressive effect, resulting in better protection against acute liver inflammation than that demonstrated by WT pDCs. These findings highlight the therapeutic potential of the manipulation of the CCR9 axis as an approach to improve migration of immunosuppressive pDCs to the liver in order to exploit their beneficial effects in acute liver disease.


Asunto(s)
Quimiocinas , Células Dendríticas , Receptores CCR/metabolismo , Traslado Adoptivo , Animales , Inflamación , Hígado , Ratones
10.
Brain Nerve ; 74(8): 971-977, 2022 Aug.
Artículo en Japonés | MEDLINE | ID: mdl-35941793

RESUMEN

The vagus nerve is considered a key component of the gut-brain axis, a complex network which connects the gut and the brain bidirectionally. The vagus receives a variety of information from the gut and transmits it to the brain. We recently discovered that peripheral regulatory T cells (pTregs) in the gut, which are essential for intestinal immune tolerance, are not only controlled by the gut microbiota but are also regulated by the vago-vagal reflex via the gut microbiota information→gut→liver→brain→gut pathway. The discovery of the role of the gut-brain axis in the intestinal pTreg cell induction mechanism may be useful for the development of a neurostimulatory therapeutic tool to coordinate the complex intestinal-brain association via the brain. Additionally, in this review, we have summarized reports that describe the correlations between the vagus and the gut-brain axis, which have been discovered successively.


Asunto(s)
Eje Cerebro-Intestino , Linfocitos T Reguladores , Encéfalo/fisiología , Humanos , Hígado , Reflejo , Nervio Vago/fisiología
11.
Int Immunol ; 34(9): 475-484, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-35793533

RESUMEN

It has long been assumed that the nervous system exerts distinct effects on immune functions, given the large number of immune disorders that are affected by mental stress. In fact, many different immune cells have been shown to possess a wide variety of neurotransmitter receptors and receive signals from various neurotransmitters, including acetylcholine and noradrenaline. Compared with the findings on local neuroimmune interactions, limited experimental techniques have so far failed to capture a comprehensive overview of neuroimmune interactions between distant organs and the autonomic nervous system in vivo, and the molecular mechanisms underlying local immune regulation of the nervous system have long remained unclear. However, the recent rapid progress in genetic recombination, microscopy and single-cell analysis has deepened our understanding of the anatomical and physiological functions of peripheral nerves at each organ to which they belong. Furthermore, the development of optogenetic and chemogenetic methods has enabled the artificial modulation of specific neuronal activities, and there has been remarkable progress in elucidation of the interaction between nerves and immune cells in vivo, particularly in barrier organs such as the gastrointestinal tract, respiratory tract and skin. This review focuses on the immunoregulatory mechanisms governed by the autonomic nervous system and outlines the latest findings in the regulation of enteric and hepatic immunity by the nervous system.


Asunto(s)
Hígado , Neuroinmunomodulación , Neuronas
12.
Front Immunol ; 13: 867351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35707544

RESUMEN

Group 2 innate lymphoid cells (ILC2s) were identified in 2010 as a novel lymphocyte subset lacking antigen receptors, such as T-cell or B-cell receptors. ILC2s induce local immune responses characterized by producing type 2 cytokines and play essential roles for maintaining tissue homeostasis. ILC2s are distributed across various organs, including the intestine where immune cells are continuously exposed to external antigens. Followed by luminal antigen stimulation, intestinal epithelial cells produce alarmins, such as IL-25, IL-33, and thymic stromal lymphopoietin, and activate ILC2s to expand and produce cytokines. In the context of parasite infection, the tuft cell lining in the epithelium has been revealed as a dominant source of intestinal IL-25 and possesses the capability to regulate ILC2 homeostasis. Neuronal systems also regulate ILC2s through neuropeptides and neurotransmitters, and interact with ILC2s bidirectionally, a process termed "neuro-immune crosstalk". Activated ILC2s produce type 2 cytokines, which contribute to epithelial barrier function, clearance of luminal antigens and tissue repair, while ILC2s are also involved in chronic inflammation and tissue fibrosis. Recent studies have shed light on the contribution of ILC2s to inflammatory bowel diseases, mainly comprising ulcerative colitis and Crohn's disease, as defined by chronic immune activation and inflammation. Modern single-cell analysis techniques provide a tissue-specific picture of ILC2s and their roles in regulating homeostasis in each organ. Particularly, single-cell analysis helps our understanding of the uniqueness and commonness of ILC2s across tissues and opens the novel research area of ILC2 heterogeneity. ILC2s are classified into different phenotypes depending on tissue and phase of inflammation, mainly inflammatory and natural ILC2 cells. ILC2s can also switch phenotype to ILC1- or ILC3-like subsets. Hence, recent studies have revealed the heterogeneity and plasticity of ILC2, which indicate dynamicity of inflammation and the immune system. In this review, we describe the regulatory mechanisms, function, and pathological roles of ILC2s in the intestine.


Asunto(s)
Inmunidad Innata , Linfocitos , Citocinas/metabolismo , Homeostasis , Humanos , Inflamación , Intestinos/patología
13.
Cell Rep ; 39(6): 110773, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35545035

RESUMEN

CD4+Foxp3+ regulatory T cells (Tregs) are essential for homeostasis in the colon, but the mechanism by which local environmental cues determine the localization of colonic Tregs is unclear. Here, we administer indigo naturalis (IN), a nontoxic phytochemical aryl hydrocarbon receptor (AhR) agonist used for treating patients with ulcerative colitis (UC) in Asia, and we show that IN increases Helios+ Tregs and MHC class II+ epithelial cells (ECs) in the colon. Interactions between Tregs and MHC class II+ ECs occur mainly near the crypt bottom in the steady state, whereas Tregs dramatically increase and shift toward the crypt top following IN treatment. Moreover, the number of CD25+ T cells is increased near the surface of ECs in IN-treated UC patients compared with that in patients treated with other therapies. We also highlight additional AhR-signaling mechanisms in intestinal ECs that determine the accumulation and localization of Helios+ Tregs in the colon.


Asunto(s)
Colitis Ulcerosa , Receptores de Hidrocarburo de Aril , Células Epiteliales , Humanos , Linfocitos T Reguladores
14.
Semin Immunopathol ; 44(4): 509-526, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35211777

RESUMEN

In addition to carcinogenesis, T helper 17 (Th17) cells (a subtype of CD4 + T lymphocytes) are involved in the acute, chronic, and cirrhotic phases of liver diseases; however, their role in the development and progression of liver diseases remains unclear. It is difficult to elucidate the role of Th17 cells in liver diseases due to their dichotomous nature, i.e., plasticity in terms of pathogenic or host protective function depending on environmental and time phase factors. Moreover, insufficient depletion of Th17 cells by inhibiting the cytokines and transcription factors involved in their production causes difficulties in analyzing their specific role in vitro and in vivo murine models, partially due to complex interaction. This review summarizes the recent progress in understanding the plasticity and function of hepatic Th17 cells and type 3 cytokines.


Asunto(s)
Hepatopatías , Células Th17 , Animales , Autoinmunidad , Citocinas , Humanos , Interleucina-17 , Ratones , Linfocitos T Reguladores , Células TH1
15.
Int Immunol ; 34(2): 97-106, 2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-34240133

RESUMEN

The pathophysiology of inflammatory bowel diseases (IBDs) involves immunological, genetic and environmental factors. Through its ability to sense environmental stimuli, the autonomic nervous system plays a key role in the development and persistence of IBDs. The vagus nerve (VN), which contains sensory and motor neurons, travels throughout the body to innervate the gut and other visceral organs in the thoracic and abdominopelvic cavities. Recent studies show that the VN has anti-inflammatory effects via the release of acetylcholine, in what is known as the cholinergic anti-inflammatory pathway (CAIP). In the gut immune system, the CAIP is proposed to be activated directly by signals from the gut and indirectly by signals from the liver, which receives gut-derived bioactive substances via the portal vein and senses the status of the gut. The gut-brain axis and liver-brain-gut reflex arc regulate a wide variety of peripheral immune cells to maintain homeostasis in the gut. Therefore, targeting the neural reflex by methods such as VN stimulation is now under investigation for suppressing intestinal inflammation associated with IBDs. In this review, we describe the role of the VN in the regulation of intestinal immunity, and we discuss novel therapeutic approaches for IBDs that target neuroimmune interactions.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Nervio Vago , Encéfalo , Homeostasis , Humanos , Neuroinmunomodulación , Nervio Vago/metabolismo
16.
Neuropharmacology ; 205: 108915, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34919906

RESUMEN

The liver is the largest organ in the human body and is responsible for the metabolism and storage of the three principal nutrients: carbohydrates, fats, and proteins. In addition, the liver contributes to the breakdown and excretion of alcohol, medicinal agents, and toxic substances and the production and secretion of bile. In addition to its role as a metabolic centre, the liver has recently attracted attention for its function in the liver-brain axis, which interacts closely with the central nervous system via the autonomic nervous system, including the vagus nerve. The liver-brain axis influences the control of eating behaviour in the central nervous system through stimuli from the liver. Conversely, neural signals from the central nervous system influence glucose, lipid, and protein metabolism in the liver. The liver also receives a constant influx of nutrients and hormones from the intestinal tract and compounds of bacterial origin via the portal system. As a result, the intestinal tract and liver are involved in various immunological interactions. A good example is the co-occurrence of primary sclerosing cholangitis and ulcerative colitis. These heterogeneous roles of the liver-brain axis are mediated via the vagus nerve in an asymmetrical manner. In this review, we provide an overview of these interactions, mainly with the liver but also with the brain and gut.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Encéfalo/fisiología , Enfermedades Gastrointestinales , Hepatopatías , Hígado/fisiología , Enfermedades Pancreáticas , Nervio Vago/fisiología , Animales , Humanos
17.
Hepatol Commun ; 5(9): 1555-1570, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34510840

RESUMEN

How liver tolerance is disrupted in immune-mediated liver injury is currently unclear. There is also insufficient information available regarding susceptibility, precipitation, escalation, and perpetuation of autoimmune hepatitis. To explore how dietary fiber influences hepatic damage, we applied the concanavalin A (ConA)-induced acute immune-mediated liver injury model in mice fed a diet supplemented with 6.8% inulin, a water-soluble fermentable fiber. Twelve hours after ConA administration, inulin-supplemented diet-fed mice demonstrated significantly alleviated hepatic damage histologically and serologically, with down-regulation of hepatic interferon-γ and tumor necrosis factor and reduced myeloperoxidase (MPO)-producing neutrophil infiltration. Preconditioning with an inulin-supplemented diet for 2 weeks significantly reduced hepatic adenosine triphosphate (ATP) content; suramin, a purinergic P2 receptor antagonist, abolished the protective effect. Of note, the portal plasma derived from mice fed the inulin-supplemented diet significantly alleviated ConA-induced immune-mediated liver injury. Mechanistically, increased portal short-chain fatty acid (SCFA) levels, such as those of acetate and butyrate, by inulin supplementation leads to up-regulation of hepatic γ-type peroxisome proliferator-activated receptor (Pparg) and uncoupling protein 2 (Ucp2), which uncouples mitochondrial ATP synthesis downstream of PPARγ. Pparg down-regulating small interfering RNA cancelled the protective effect of inulin supplementation against MPO-producing neutrophil infiltration and the subsequent immune-mediated liver injury, suggesting that the SCFA-PPARγ-UCP2 axis plays a key role in the protective effect by inulin supplementation. Moreover, significant changes in the gut microbiota, including increased operational taxonomic units in genera Akkermansia and Allobaculum, also characterized the protective effect of the inulin-supplemented diet. Conclusion: There is a possible unraveled etiopathophysiological link between the maintenance of liver tolerance and dietary fiber. The SCFA-PPARγ-UCP2 axis may provide therapeutic targets for immune-mediated liver injury in the future.

18.
Sci Rep ; 11(1): 13690, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34211048

RESUMEN

Increased intestinal permeability and hepatic macrophage activation by endotoxins are involved in alcohol-induced liver injury pathogenesis. Long-term alcohol exposure conversely induces endotoxin immune tolerance; however, the precise mechanism and reversibility are unclear. Seventy-two alcohol-dependent patients with alcohol dehydrogenase-1B (ADH1B, rs1229984) and aldehyde dehydrogenase-2 (ALDH2, rs671) gene polymorphisms admitted for alcohol abstinence were enrolled. Blood and fecal samples were collected on admission and 4 weeks after alcohol cessation and were sequentially analyzed. Wild-type and ALDH2*2 transgenic mice were used to examine the effect of acetaldehyde exposure on liver immune responses. The productivity of inflammatory cytokines of peripheral CD14+ monocytes in response to LPS stimulation was significantly suppressed in alcohol dependent patients on admission relative to that in healthy controls, which was partially restored by alcohol abstinence with little impact on the gut microbiota composition. Notably, immune suppression was associated with ALDH2/ADH1B gene polymorphisms, and patients with a combination of ALDH2*1/*2 and ADH1B*2 genotypes, the most acetaldehyde-exposed group, demonstrated a deeply suppressed phenotype, suggesting a direct role of acetaldehyde. In vitro LPS and malondialdehyde-acetaldehyde adducted protein stimulation induced direct cytotoxicity on monocytes derived from healthy controls, and a second LPS stimulation suppressed the inflammatory cytokines production. Consistently, hepatic macrophages of ethanol-administered ALDH2*2 transgenic mice exhibited suppressed inflammatory cytokines production in response to LPS compared to that in wild-type mice, reinforcing the contribution of acetaldehyde to liver macrophage function. These results collectively provide new perspectives on the systemic influence of excessive alcohol consumption based on alcohol-metabolizing enzyme genetic polymorphisms.


Asunto(s)
Acetaldehído/efectos adversos , Consumo de Bebidas Alcohólicas/patología , Alcoholismo/patología , Monocitos/patología , Alcohol Deshidrogenasa/genética , Consumo de Bebidas Alcohólicas/genética , Alcoholismo/genética , Aldehído Deshidrogenasa Mitocondrial/genética , Animales , Células Cultivadas , Predisposición Genética a la Enfermedad , Humanos , Cirrosis Hepática Alcohólica/genética , Cirrosis Hepática Alcohólica/patología , Masculino , Ratones , Persona de Mediana Edad , Monocitos/efectos de los fármacos , Polimorfismo Genético
19.
Nat Commun ; 12(1): 4474, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34294714

RESUMEN

Non-alcoholic steatohepatitis (NASH) is a leading cause of chronic liver disease that can progress to liver fibrosis. Recent clinical advance suggests a reversibility of liver fibrosis, but the cellular and molecular mechanisms underlying NASH resolution remain unclarified. Here, using a murine diet-induced NASH and the subsequent resolution model, we demonstrate direct roles of CD8+ tissue-resident memory CD8+ T (CD8+ Trm) cells in resolving liver fibrosis. Single-cell transcriptome analysis and FACS analysis revealed CD69+CD103-CD8+ Trm cell enrichment in NASH resolution livers. The reduction of liver CD8+ Trm cells, maintained by tissue IL-15, significantly delayed fibrosis resolution, while adoptive transfer of these cells protected mice from fibrosis progression. During resolution, CD8+ Trm cells attracted hepatic stellate cells (HSCs) in a CCR5-dependent manner, and predisposed activated HSCs to FasL-Fas-mediated apoptosis. Histological assessment of patients with NASH revealed CD69+CD8+ Trm abundance in fibrotic areas, further supporting their roles in humans. These results highlight the undefined role of liver CD8+ Trm in fibrosis resolution.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/inmunología , Cirrosis Hepática/patología , Enfermedad del Hígado Graso no Alcohólico/inmunología , Enfermedad del Hígado Graso no Alcohólico/patología , Traslado Adoptivo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Apoptosis/inmunología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Células Estrelladas Hepáticas/inmunología , Humanos , Memoria Inmunológica , Interleucina-15/inmunología , Cirrosis Hepática/terapia , Masculino , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Enfermedad del Hígado Graso no Alcohólico/terapia , Receptores CCR5/inmunología , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...