Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arch Toxicol ; 96(9): 2609-2619, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35674809

RESUMEN

NX is a type A trichothecene produced by Fusarium graminearum with limited information on its toxicity. NX is structurally similar to deoxynivalenol (DON), only differing by the lacking keto group at C8. Because of the structural similarity of the two toxins as well as their potential co-occurrence in food and feed, it is of interest to determine the toxicity of this new compound. In this study, we compared the protein composition of the extracellular media of pig intestinal explants (secretome) exposed to 10 µM of DON or NX for 4 h compared with controls. The combination of two complementary quantitative proteomic approaches (a gel-based and a gel-free approach) identified 18 and 23 differentially abundant proteins (DAPs) for DON and NX, respectively, compared to controls. Functional analysis suggested that, whereas DON toxicity was associated with decreased cell viability and cell destruction, NX toxicity was associated with an enrichment of mitochondrial proteins in the secretome. The presence of these proteins may be associated with the already known ability of NX to induce an intestinal inflammation. Overall, our results indicated that DON- and NX-induced changes in the extracellular proteome of intestinal explants are different. The increased leakage/secretion of mitochondrial proteins by NX may be a feature of NX toxicity.


Asunto(s)
Fusarium , Proteínas Mitocondriales , Animales , Supervivencia Celular , Fusarium/metabolismo , Intestinos , Proteínas Mitocondriales/metabolismo , Proteómica , Secretoma , Porcinos
2.
Toxins (Basel) ; 14(2)2022 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-35202111

RESUMEN

Fumonisin B1 (FB1) is a widespread mycotoxin produced by fungal Fusarium species-mainly in maize, one of the plants most commonly used for food and feed. Pigs and horses are the animal species most susceptible to this mycotoxin. FB1 exposure can cause highly diverse clinical symptoms, including hepatotoxicity, immunotoxicity, and intestinal barrier function disturbance. Inhibition of ceramide synthetase is a well-understood ubiquitous molecular mechanism of FB1 toxicity, but other more tissue-specific effects remain to be elucidated. To investigate the effects of FB1 in different exposed tissues, we cross-analyzed the transcriptomes of fours organs: liver, jejunum, jejunal Peyer's patches, and spleen. During a four-week study period, pigs were fed a control diet or a FB1-contaminated diet (10 mg/kg feed). In response to oral FB1 exposure, we observed common biological processes in the four organs, including predominant and recurrent processes (extracellular matrix organization, integrin activation, granulocyte chemotaxis, neutrophil migration, and lipid and sterol homeostasis), as well as more tissue-specific processes that appeared to be related to lipid outcomes (cell cycle regulation in jejunum, and gluconeogenesis in liver).


Asunto(s)
Fumonisinas/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Enfermedades de los Porcinos/inducido químicamente , Administración Oral , Animales , Estudio de Asociación del Genoma Completo , Yeyuno/efectos de los fármacos , Yeyuno/metabolismo , Hígado/efectos de los fármacos , Hígado/metabolismo , Ganglios Linfáticos Agregados/efectos de los fármacos , Ganglios Linfáticos Agregados/metabolismo , Porcinos
3.
Biomed Pharmacother ; 147: 112630, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35051860

RESUMEN

Most patients affected with colorectal cancers (CRC) are treated with 5-fluorouracil (5-FU)-based chemotherapy but its efficacy is often hampered by resistance mechanisms linked to tumor heterogeneity. A better understanding of the molecular determinants involved in chemoresistance is critical for precision medicine and therapeutic progress. Caudal type homeobox 2 (CDX2) is a master regulator of intestinal identity and acts as tumor suppressor in the colon. Here, using a translational approach, we examined the role of CDX2 in CRC chemoresistance. Unexpectedly, we discovered that the prognosis value of CDX2 for disease-free survival of patients affected with CRC is lost upon chemotherapy and that CDX2 expression enhances resistance of colon cancer cells towards 5-FU. At the molecular level, we found that CDX2 expression correlates with higher levels of genes regulating the bioavailability of 5-FU through efflux (ABCC11) and catabolism (DPYD) in patients affected with CRC and CRC cell lines. We further showed that CDX2 directly regulates the expression of ABCC11 and that the inhibition of ABCC11 improves 5-FU-sensitivity of CDX2-expressing colon cancer cells. Thus, this study illustrates how biological functions are hijacked in CRC cells and reveals the therapeutic interest of CDX2/ABCC11/DPYD to improve systemic chemotherapy in CRC.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Fluorouracilo/farmacología , Adulto , Anciano , Anciano de 80 o más Años , Antimetabolitos Antineoplásicos/química , Antimetabolitos Antineoplásicos/uso terapéutico , Factor de Transcripción CDX2/genética , Factor de Transcripción CDX2/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Estudios de Cohortes , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/mortalidad , Supervivencia sin Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Fluorouracilo/química , Fluorouracilo/uso terapéutico , Francia , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
4.
Biomed Pharmacother ; 146: 112543, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34929577

RESUMEN

Chronic inflammation associated with intestinal architecture and barrier disruption puts patients with inflammatory bowel disease (IBD) at increased risk of developing colorectal cancer (CRC). Widely used to reduce flares of intestinal inflammation, 5-aminosalicylic acid derivatives (5-ASAs) such as mesalazine appear to also exert more direct mucosal healing and chemopreventive activities against CRC. The mechanisms underlying these activities are poorly understood and may involve the up-regulation of the cadherin-related gene MUCDHL (CDHR5). This atypical cadherin is emerging as a new actor of intestinal homeostasis and opposes colon tumorigenesis. Here, we showed that mesalazine increase mRNA levels of MUCDHL and of other genes involved in the intestinal barrier function in most intestinal cell lines. In addition, using gain / loss of function experiments (agonists, plasmid or siRNAs transfections), luciferase reporter genes and chromatin immunoprecipitation, we thoroughly investigated the molecular mechanisms triggered by mesalazine that lead to the up-regulation of MUCDHL expression. We found that basal transcription of MUCDHL in different CRC cell lines is regulated positively by CDX2 and negatively by ß-catenin through a negative feed-back loop. However, mesalazine-stimulation of MUCDHL transcription is controlled by cell-specific mechanisms, involving either enhanced activation of CDX2 and PPAR-γ or repression of the ß-catenin inhibitory effect. This work highlights the importance of the cellular and molecular context in the activity of mesalazine and suggests that its efficacy against CRC depends on the genetic alterations of transformed cells.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Proteínas Relacionadas con las Cadherinas , Cadherinas/genética , Cadherinas/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias Colorrectales/genética , Humanos , Mesalamina/farmacología , Vía de Señalización Wnt , beta Catenina/metabolismo
5.
Environ Pollut ; 277: 116818, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33752036

RESUMEN

The intestinal epithelium is a functional and physical barrier formed by a cell monolayer that constantly differentiates from a stem cell in the crypt. This is the first target for food contaminants, especially mycotoxins. Deoxynivalenol (DON) is one of the most prevalent mycotoxins. This study compared the effects of DON (0-100 µM) on proliferative and differentiated intestinal epithelial cells. Three cell viability assays (LDH release, ATP content and neutral red uptake) indicated that proliferative Caco-2 cells are more sensitive to DON than differentiated ones. The establishment of transepithelial electrical resistance (TEER), as a read out of the differentiation process, was delayed in proliferative cells after exposure to 1 µM DON. Transcriptome analysis of proliferative and differentiated exposure to 0-3 µM DON for 24 h revealed 4862 differentially expressed genes (DEG) and indicated an effect of both the differentiation status and the DON treatment. KEGG enrichment analysis indicated involvement of metabolism, ECM receptors and tight junctions in the differentiation process, while ribosome biogenesis, mRNA surveillance, and the MAPK pathway were involved in the response to DON. The number of differentially expressed genes and the amplitude of the effect were higher in proliferative cells exposed to DON than that in differentiated cells. In conclusion, our study shows that proliferative cells are more susceptible than differentiated ones to DON and that the mycotoxin delays the differentiation process.


Asunto(s)
Tricotecenos , Células CACO-2 , Diferenciación Celular , Células Epiteliales , Humanos , Tricotecenos/toxicidad
6.
Toxins (Basel) ; 11(9)2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546931

RESUMEN

Fumonisins (FBs) are mycotoxins produced by Fusarium species that can contaminate human food and animal feed. Due to the harmful effects of FBs on animals, the European Union (EU) defined a recommendation of a maximum of 5 mg FBs (B1 + B2)/kg for complete feed for swine and 1 µg FBs/kg body weight per day as the tolerable daily intake for humans. The aim of this study was to evaluate the toxicity of dietary exposure to low doses of FBs, including a dose below the EU regulatory limits. Four groups of 24 weaned castrated male piglets were exposed to feed containing 0, 3.7, 8.1, and 12.2 mg/kg of FBs for 28 days; the impact was measured by biochemical analysis and histopathological observations. Dietary exposure to FBs at a low dose (3.7 mg/kg of feed) significantly increased the plasma sphinganine-to-sphingosine ratio. FBs-contaminated diets led to histological modifications in the intestine, heart, lung, lymphoid organs, kidney, and liver. The histological alterations in the heart and the intestine appeared at the lowest dose of FBs-contaminated diet (3.7 mg/kg feed) and in the kidney at the intermediate dose (8.1 mg/kg feed). At the highest dose tested (12.2 mg/kg feed), all the organs displayed histological alterations. This dose also induced biochemical modifications indicative of kidney and liver alterations. In conclusion, our data indicate that FBs-contaminated diets at doses below the EU regulatory limit cause histological lesions in several organs. This study suggests that EU recommendations for the concentration of FBs in animal feed, especially for swine, are not sufficiently protective and that regulatory doses should be modified for better protection of animal health.


Asunto(s)
Alimentación Animal/efectos adversos , Exposición Dietética/efectos adversos , Contaminación de Alimentos/legislación & jurisprudencia , Fumonisinas/toxicidad , Animales , Unión Europea , Regulación Gubernamental , Intestinos/efectos de los fármacos , Intestinos/patología , Riñón/efectos de los fármacos , Riñón/patología , Hígado/efectos de los fármacos , Hígado/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Masculino , Miocardio/patología , Nivel sin Efectos Adversos Observados , Porcinos
7.
Environ Int ; 132: 105082, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31400600

RESUMEN

Deoxynivalenol (DON), one of the most widespread mycotoxins in Europe, and cadmium (Cd), a widespread environmental pollutant, are common food contaminants. They exert adverse effects on different organs including kidney, liver, and intestine. The intestine is a common target of DON and Cd when they are ingested. Most studies have focused on their individual effects whereas their combined toxicity has rarely been studied. The aim of this study was thus to evaluate their individual and combined effects on the intestinal barrier function in vitro and in vivo. In vitro, Caco-2 cells were treated with increasing concentrations of DON and Cd (1-30 µM). In vivo, Wistar rats were used as controls or exposed to DON contaminated feed (8.2 mg/kg feed), Cd-contaminated water (5 mg/l) or both for four weeks. In Caco-2 cells, DON, Cd and the DON+Cd mixture reduced transepithelial electrical resistance (TEER) and increased paracellular permeability in a dose-dependent manner. Impairment of the barrier function was associated with a decrease in the amount of E-cadherin and occludin after exposure to the two contaminants alone or combined. A decrease in E-cadherin expression was observed in rats exposed to the two contaminants alone or combined, whereas occludin expression only decreased in animals exposed to DON and DON+Cd. Jejunal crypt depth was reduced in rats exposed to DON or Cd, whereas villi height was not affected. In vitro and in vivo results showed that the effects of exposure to combined DON and Cd on the intestinal barrier function in the jejunum of Wistar rats and in the colorectal cancer cell line (Caco-2) was similar to the effects of each individual contaminant. This suggests that regulations for each individual contaminant are sufficiently protective for consumers.


Asunto(s)
Cadmio/toxicidad , Contaminantes Ambientales/toxicidad , Absorción Intestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Tricotecenos/toxicidad , Anciano , Animales , Células CACO-2 , Impedancia Eléctrica , Europa (Continente) , Contaminación de Alimentos , Humanos , Masculino , Permeabilidad , Ratas , Ratas Wistar
8.
Clin Exp Gastroenterol ; 12: 67-82, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804678

RESUMEN

Intestinal barrier defects lead to "leaky gut syndrome", defined as an increase in intestinal permeability that allows the passage of luminal content into intestinal tissue and the bloodstream. Such a compromised intestinal barrier is the main factor underlying the pathogenesis of inflammatory bowel disease, but also commonly occurs in various systemic diseases such as viral infections and metabolic syndrome. The non-pathogenic yeast Saccharomyces boulardii CNCM I-745 has demonstrated its effectiveness as a probiotic in the prevention and treatment of antibiotic-associated, infectious and functional diarrhea. Via multiple mechanisms of action implicated in intestinal barrier function, S. boulardii has beneficial effects on altered intestinal microbiota and epithelial barrier defects in different pathologies. The well-studied probiotic yeast S. boulardii plays a crucial role in the preservation and/or restoration of intestinal barrier function in multiple disorders. This could be of major interest in diseases characterized by alterations in intestinal barrier function.

9.
Food Chem Toxicol ; 121: 701-714, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30243968

RESUMEN

The trichothecenes, produced by Fusarium, contaminate animal feed and human food in all stages of production and lead to a large spectrum of adverse effects for animal and human health. An hallmark of trichothecenes toxicity is the onset of emesis followed by anorexia and food intake reduction in different animal species (mink, mice and pig). The modulation of emesis and anorexia can result from a direct action of trichothecenes in the brain or from an indirect action in the gastrointestinal tract. The direct action of trichothecenes involved specific brain areas such as nucleate tractus solitarius in the brainstem and the arcuate nuclei in the hypothalamus. Activation of these areas in the brain leads to the activation of specific neuronal populations containing anorexigenic factors (POMC and CART). The indirect action of trichothecenes in the gastrointestinal tract involved, by enteroendocrine cells, the secretion of several gut hormones such as cholecystokinin (CCK) and peptide YY (PYY) but also glucagon-like peptide 1 (GLP-1), gastric inhibitory peptide (GIP) and 5-hydroxytryptamine (5-HT), which transmitted signals to the brain via the gut-brain axis. This review summarizes current knowledge on the effects of trichothecenes, especially deoxynivalenol, on emesis and anorexia and discusses the mechanisms underlying trichothecenes-induced food reduction.


Asunto(s)
Anorexia/inducido químicamente , Contaminación de Alimentos/análisis , Respuesta de Saciedad/efectos de los fármacos , Tricotecenos/toxicidad , Animales , Humanos , Tricotecenos/química
10.
Br J Cancer ; 118(4): 546-557, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29161242

RESUMEN

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterised by an extensive tissue invasion and an early formation of metastasis. Alterations in the expression of cadherins have been reported in PDAC. Yet, how these changes contribute to tumour progression is poorly understood. Here, we investigated the relationship between cadherins expression and PDAC development. METHODS: Cadherins expression was assessed by immunostaining in both human and murine tissue specimens. We have generated pancreatic cancer cell lines expressing both cadherin-1 and cadherin-3 or only one of these cadherins. Functional implications of such genetic alterations were analysed both in vitro and in vivo. RESULTS: Cadherin-3 is detected early at the plasma membrane during progression of pancreatic intraepithelial neoplasia 1 (PanIN-1) to PDAC. Despite tumoural cells turn on cadherin-3, a significant amount of cadherin-1 remains expressed at the cell surface during tumourigenesis. We found that cadherin-3 regulates tumour growth, while cadherin-1 drives type I collagen organisation in the tumour. In vitro assays showed that cadherins differentially participate to PDAC aggressiveness. Cadherin-3 regulates cell migration, whereas cadherin-1 takes part in the invadopodia activity. CONCLUSIONS: Our results show differential, but complementary, roles for cadherins during PDAC carcinogenesis and illustrate how their expression conditions the PDAC aggressiveness.


Asunto(s)
Antígenos CD/metabolismo , Cadherinas/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Animales , Antígenos CD/genética , Cadherinas/genética , Carcinoma Ductal Pancreático/genética , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Colágeno Tipo I/metabolismo , Progresión de la Enfermedad , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética
11.
J Crohns Colitis ; 11(8): 999-1010, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28333335

RESUMEN

BACKGROUND AND AIMS: Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. METHODS: We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. RESULTS: We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. CONCLUSION: These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability.


Asunto(s)
Cadherinas/metabolismo , Mucosa Intestinal/metabolismo , Saccharomyces boulardii , Línea Celular , Permeabilidad de la Membrana Celular , Colitis Ulcerosa/metabolismo , Enfermedad de Crohn/metabolismo , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Humanos , Microscopía por Video , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena en Tiempo Real de la Polimerasa
12.
Br J Cancer ; 113(10): 1445-53, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26512877

RESUMEN

BACKGROUND: Malignant transformation of melanocytes frequently coincides with an alteration in the expression of cell-cell adhesion molecules (cadherins) and cell-extracellular matrix proteins (integrins). How these two adhesion systems interplay to impact on cell invasion remains to be described in melanoma. METHODS: Cell adhesion networks were localised by immunofluorescence in human primary cutaneous melanoma, metastatic melanoma in the lymph nodes, and melanoma cell lines. The role of these cell adhesion networks was assessed both in vivo, by analysing their impact on tumour growth in mice, and in vitro, with the use of functional tests including cell aggregation and cell migration. RESULTS: We found that α2ß1 integrin associates with both E-cadherin and N-cadherin to form two adhesive networks, distinguishable by the interaction-or not-of α2ß1 integrin with type I collagen. N-cadherin/α2ß1 integrin and E-cadherin/α2ß1 integrin networks differently participated towards tumour growth in mice. The N-cadherin/α2ß1 integrin network showed specific involvement in melanoma cell invasion and migration towards type I collagen. On the other hand, the E-cadherin/α2ß1 network regulated cell-cell adhesion. CONCLUSIONS: This suggests that different signalling environments can be generated, depending on the type and/or local concentration of cadherin present in the adhesion complex, which potentially leads to differential cell responses. Further clarification of how these adhesive networks are regulated is fundamental to understanding important physiological and pathological processes such as morphogenesis, wound healing, tumour invasion and metastasis.


Asunto(s)
Cadherinas/metabolismo , Integrina alfa2beta1/metabolismo , Melanoma/patología , Neoplasias Cutáneas/patología , Animales , Adhesión Celular , Línea Celular Tumoral , Humanos , Melanoma/metabolismo , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Cutáneas/metabolismo
13.
PLoS One ; 9(8): e103069, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25118595

RESUMEN

Salmonella enterica serovar Typhimurium (ST) is an enteropathogenic Gram-negative bacterium that causes infection following oral ingestion. ST spreads rapidly along the gastrointestinal tract (GIT) and invades the intestinal epithelium to ultimately reach internal body organs. The probiotic yeast Saccharomyces boulardii BIOCODEX (S.b-B) is prescribed for prophylaxis of diarrheal infectious diseases. We previously showed that S.b-B prevents weight loss in ST-infected mice and significantly decreases bacterial translocation to the spleen and liver. This study was designed to investigate the effect of S.b-B on ST migration along the GIT and the impact of the yeast on the host's early innate immune responses. Bioluminescent imaging (BLI) was used to evaluate the effect of S.b-B on the progression of luminescent Salmonella Typhimurium (ST-lux) in the GIT of mice pretreated with streptomycin. Photonic emission (PE) was measured in GIT extracts (stomach, small intestine, cecum and colon) at various time periods post-infection (PI). PE analysis revealed that, 45 min PI, ST-lux had migrated slightly faster in the mice treated with S.b-B than in the untreated infected animals. At 90 min PI, ST-lux had reached the cecum in both groups of mice. Adhesion of ST to S.b-B was visualized in the intestines of the mice and probably accounts for (1) the faster elimination of ST-lux in the feces, and (2) reduced translocation of ST to the spleen and liver. In the early phase of infection, S.b-B also modifies the host's immune responses by (1) increasing IFN-γ gene expression and decreasing IL-10 gene expression in the small intestine, and (2) elevating both IFN-γ, and IL-10 mRNA levels in the cecum. BLI revealed that S.b-B modifies ST migration and the host immune response along the GIT. Study findings shed new light on the protective mechanisms of S.b-B during the early phase of Salmonella pathogenesis.


Asunto(s)
Interacciones Huésped-Patógeno/efectos de los fármacos , Intestinos/microbiología , Probióticos/farmacología , Saccharomyces/fisiología , Salmonella typhimurium/fisiología , Animales , Adhesión Bacteriana , Femenino , Regulación de la Expresión Génica , Inmunidad Innata/efectos de los fármacos , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Intestinos/inmunología , Mediciones Luminiscentes , Ratones Endogámicos C57BL , Salmonella typhimurium/inmunología
14.
PLoS One ; 7(9): e45047, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028753

RESUMEN

Intestinal epithelial cell damage is frequently seen in the mucosal lesions of infectious or inflammatory bowel diseases such as ulcerative colitis or Crohn's disease. Complete remission of these diseases requires both the disappearance of inflammation and the repair of damaged epithelium. Saccharomyces boulardii (Sb, Biocodex) is a non-pathogenic yeast widely used as a preventive and therapeutic probiotic for the prevention and treatment of diarrhea and other gastrointestinal disorders. We recently showed that it enhances the repair of intestinal epithelium through activation of α2ß1 integrin collagen receptors. In the present study, we demonstrated that α2ß1 integrin is not the sole cell-extracellular matrix receptor involved during Sb-mediated intestinal restitution. Indeed, by using cell adhesion assays, we showed that Sb supernatant contains heat sensitive molecule(s), with a molecular weight higher than 9 kDa, which decreased αvß5 integrin-mediated adhesion to vitronectin by competing with the integrin. Moreover, Sb-mediated changes in cell adhesion to vitronectin resulted in a reduction of the αvß5signaling pathway. We used a monolayer wounding assay that mimics in vivo cell restitution to demonstrate that down-modulation of the αvß5 integrin-vitronectin interaction is related to Sb-induced cell migration. We therefore postulated that Sb supernatant contains motogenic factors that enhance cell restitution through multiple pathways, including the dynamic fine regulation of αvß5 integrin binding activity. This could be of major importance in diseases characterized by severe mucosal injury, such as inflammatory and infectious bowel diseases.


Asunto(s)
Enterocitos/metabolismo , Enterocitos/microbiología , Receptores de Vitronectina/metabolismo , Saccharomyces/fisiología , Animales , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Enterocitos/citología , Conducta Alimentaria , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Peso Molecular , Unión Proteica , Transporte de Proteínas , Transducción de Señal , Vitronectina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...