Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 10(9): eadj3872, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38416828

RESUMEN

Advances in robotics have outpaced the capabilities of man-machine interfaces to decipher and transfer neural information to and from prosthetic devices. We emulated clinical scenarios where high- (facial) or low-neural capacity (ulnar) donor nerves were surgically rewired to the sternomastoid muscle, which is controlled by a very small number of motor axons. Using retrograde tracing and electrophysiological assessments, we observed a nearly 15-fold functional hyper-reinnervation of the muscle after high-capacity nerve transfer, demonstrating its capability of generating a multifold of neuromuscular junctions. Moreover, the surgically redirected axons influenced the muscle's physiological characteristics, by altering the expression of myosin heavy-chain types in alignment with the donor nerve. These findings highlight the remarkable capacity of skeletal muscles to act as biological amplifiers of neural information from the spinal cord for governing bionic prostheses, with the potential of expressing high-dimensional neural function for high-information transfer interfaces.


Asunto(s)
Neuronas Motoras , Regeneración Nerviosa , Humanos , Neuronas Motoras/fisiología , Regeneración Nerviosa/fisiología , Músculo Esquelético , Nervios Periféricos , Axones/fisiología
3.
Front Neuroanat ; 17: 1198042, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332322

RESUMEN

Basic behaviors, such as swallowing, speech, and emotional expressions are the result of a highly coordinated interplay between multiple muscles of the head. Control mechanisms of such highly tuned movements remain poorly understood. Here, we investigated the neural components responsible for motor control of the facial, masticatory, and tongue muscles in humans using specific molecular markers (ChAT, MBP, NF, TH). Our findings showed that a higher number of motor axonal population is responsible for facial expressions and tongue movements, compared to muscles in the upper extremity. Sensory axons appear to be responsible for neural feedback from cutaneous mechanoreceptors to control the movement of facial muscles and the tongue. The newly discovered sympathetic axonal population in the facial nerve is hypothesized to be responsible for involuntary control of the muscle tone. These findings shed light on the pivotal role of high efferent input and rich somatosensory feedback in neuromuscular control of finely adjusted cranial systems.

4.
J Neurosurg ; 139(5): 1396-1404, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37029679

RESUMEN

OBJECTIVE: Intrinsic function is indispensable for dexterous hand movements. Distal ulnar nerve defects can result in intrinsic muscle dysfunction and sensory deficits. Although the ulnar nerve's fascicular anatomy has been extensively studied, quantitative and topographic data on motor axons traveling within this nerve remain elusive. METHODS: The ulnar nerves of 14 heart-beating organ donors were evaluated. The motor branches to the flexor carpi ulnaris (FCU) and flexor digitorum profundus (FDP) muscles and the dorsal branch (DoBUN) as well as 3 segments of the ulnar nerve were harvested in 2-cm increments. Samples were subjected to double immunofluorescence staining using antibodies against choline acetyltransferase and neurofilament. RESULTS: Samples revealed more than 25,000 axons in the ulnar nerve at the forearm level, with a motor axon proportion of only 5%. The superficial and DoBUN showed high axon numbers of more than 21,000 and 9300, respectively. The axonal mapping of more than 1300 motor axons revealed an increasing motor/sensory ratio from the proximal ulnar nerve (1:20) to the deep branch of the ulnar nerve (1:7). The motor branches (FDP and FCU) showed that sensory axons outnumber motor axons by a ratio of 10:1. CONCLUSIONS: Knowledge of the detailed axonal architecture of the motor and sensory components of the human ulnar nerve is of the utmost importance for surgeons considering fascicular grafting or nerve transfer surgery. The low number of efferent axons in motor branches of the ulnar nerve and their distinct topographical distribution along the distal course of the nerve is indispensable information for modern nerve surgery.


Asunto(s)
Transferencia de Nervios , Nervio Cubital , Humanos , Antebrazo/inervación , Músculo Esquelético/inervación , Codo , Axones/fisiología
5.
J Adv Res ; 44: 135-147, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36725185

RESUMEN

INTRODUCTION: Neuromuscular control of the facial expressions is provided exclusively via the facial nerve. Facial muscles are amongst the most finely tuned effectors in the human motor system, which coordinate facial expressions. In lower vertebrates, the extracranial facial nerve is a mixed nerve, while in mammals it is believed to be a pure motor nerve. However, this established notion does not agree with several clinical signs in health and disease. OBJECTIVES: To elucidate the facial nerve contribution to the facial muscles by investigating axonal composition of the human facial nerve. To reveal new innervation pathways of other axon types of the motor facial nerve. METHODS: Different axon types were distinguished using specific molecular markers (NF, ChAT, CGRP and TH). To elucidate the functional role of axon types of the facial nerve, we used selective elimination of other neuronal support from the trigeminal nerve. We used retrograde neuronal tracing, three-dimensional imaging of the facial muscles, and high-fidelity neurophysiological tests in animal model. RESULTS: The human facial nerve revealed a mixed population of only 85% motor axons. Rodent samples revealed a fiber composition of motor, afferents and, surprisingly, sympathetic axons. We confirmed the axon types by tracing the originating neurons in the CNS. The sympathetic fibers of the facial nerve terminated in facial muscles suggesting autonomic innervation. The afferent fibers originated in the facial skin, confirming the afferent signal conduction via the facial nerve. CONCLUSION: These findings reveal new innervation pathways via the facial nerve, support the sympathetic etiology of hemifacial spasm and elucidate clinical phenomena in facial nerve regeneration.


Asunto(s)
Nervio Facial , Espasmo Hemifacial , Animales , Humanos , Axones/fisiología , Músculos Faciales , Nervio Facial/fisiología , Vías Nerviosas , Roedores
7.
J Neurosci ; 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36216502

RESUMEN

The surgical redirection of efferent neural input to a denervated muscle via a nerve transfer can reestablish neuromuscular control after nerve injuries. The role of autonomic nerve fibers during the process of muscular reinnervation remains largely unknown. Here, we investigated the neurobiological mechanisms behind the spontaneous functional recovery of denervated facial muscles in male rodents. Recovered facial muscles demonstrated an abundance of cholinergic axonal endings establishing functional neuromuscular junctions. The parasympathetic source of the neuronal input was confirmed to be in the pterygopalatine ganglion. Furthermore, the autonomically reinnervated facial muscles underwent a muscle fiber change to a purely intermediate muscle fiber population (MHCIIa). Finally, electrophysiological tests revealed that the postganglionic parasympathetic fibers travel to the facial muscles via the sensory infraorbital nerve. Our findings demonstrated expanded neuromuscular plasticity of denervated striated muscles enabling functional recovery via alien autonomic fibers. These findings may further explain the underlying mechanisms of sensory protection implemented to prevent atrophy of a denervated muscle.SIGNIFICANCE STATEMENT:Nerve injuries represent significant morbidity and disability for patients. Rewiring motor nerve fibers to other target muscles have shown to be a successful approach in the restoration of motor function. This demonstrates the remarkable capacity of the central nervous system to adapt to the needs of the neuromuscular system. Yet, the capability of skeletal muscles being reinnervated by non-motor axons remains largely unknown. Here, we show that under deprivation of original efferent input, the neuromuscular system can undergo functional and morphological remodeling via autonomic nerve fibers. This may explain neurobiological mechanisms of the sensory protection phenomenon, which is due to parasympathetic reinnervation.

8.
Dermatology ; 238(5): 851-859, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35086097

RESUMEN

BACKGROUND: Radical excision of debilitating hidradenitis suppurativa lesions is the only curative approach in the advanced stages of the disease. Different concepts for axillary reconstruction do exist, but data on their clinical outcome are scarce. METHODS: This is a retrospective cohort study of two reconstructive methods (posterior arm flap vs. vacuum-assisted closure [VAC] + split-thickness skin graft [STSG]) for axillary defects in patients with severe axillary hidradenitis suppurativa treated at the University Hospital Zurich between 2005 and 2020. RESULTS: A total of 35 patients (mean age 36 ± 10 years, mean BMI 29 ± 5 kg/m2, Hurley stage II-III) with 67 operated axillae were stratified according to their type of reconstruction. Median operation time in the flap group was 144 min (IQR 114-207) (cumulative 181 min [IQR 124-300]) and 50 min (IQR 40-81) in the VAC + STSG group (cumulative 151 min [IQR 94-194], p < 0.01; p = 0.20 [cumulative time]). The cumulative length of stay was 6 ± 3 days in the flap group and 14 ± 7 days in the VAC + STSG group (p < 0.01). Time to complete wound healing was 27 days (IQR 20-49) in the flap group and 62 days (IQR 41-75) in the VAC + STSG group (p < 0.01). Vancouver Scar Scale score was 6 (IQR 4-9) in the flap group and 11 (IQR 9-12) in the VAC + STSG group (p < 0.01). Protective sensory recovery was most satisfactory in the flap group (p < 0.01). Forty-four percent of patients of the VAC + STSG group demonstrated functional impairment of arm abduction. Time to return to work was less in group A with 42 days (IQR 27-57) needed as compared to group B with 48 days (IQR 34-55) needed (p = 0.32). The average cost saving was 25% higher for the flap group than for the VAC + STSG group. CONCLUSION: Despite an increased operation time, axillary reconstruction by the posterior arm flap yields a reduced length of stay, less time to complete wound healing along with restoration of a protective sensibility, and less axillary scarring avoiding functional deficits - eventually allowing earlier return to work.


Asunto(s)
Hidradenitis Supurativa , Procedimientos de Cirugía Plástica , Adulto , Axila/cirugía , Hidradenitis Supurativa/cirugía , Humanos , Persona de Mediana Edad , Procedimientos de Cirugía Plástica/métodos , Estudios Retrospectivos , Trasplante de Piel , Colgajos Quirúrgicos/cirugía
9.
Elife ; 102021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34596042

RESUMEN

Surgical nerve transfers are used to efficiently treat peripheral nerve injuries, neuromas, phantom limb pain, or improve bionic prosthetic control. Commonly, one donor nerve is transferred to one target muscle. However, the transfer of multiple nerves onto a single target muscle may increase the number of muscle signals for myoelectric prosthetic control and facilitate the treatment of multiple neuromas. Currently, no experimental models are available. This study describes a novel experimental model to investigate the neurophysiological effects of peripheral double nerve transfers to a common target muscle. In 62 male Sprague-Dawley rats, the ulnar nerve of the antebrachium alone (n=30) or together with the anterior interosseus nerve (n=32) was transferred to reinnervate the long head of the biceps brachii. Before neurotization, the motor branch to the biceps' long head was transected at the motor entry point. Twelve weeks after surgery, muscle response to neurotomy, behavioral testing, retrograde labeling, and structural analyses were performed to assess reinnervation. These analyses indicated that all nerves successfully reinnervated the target muscle. No aberrant reinnervation was observed by the originally innervating nerve. Our observations suggest a minimal burden for the animal with no signs of functional deficit in daily activities or auto-mutilation in both procedures. Furthermore, standard neurophysiological analyses for nerve and muscle regeneration were applicable. This newly developed nerve transfer model allows for the reliable and standardized investigation of neural and functional changes following the transfer of multiple donor nerves to one target muscle.


Asunto(s)
Músculo Esquelético/fisiología , Transferencia de Nervios/métodos , Traumatismos de los Nervios Periféricos/cirugía , Nervios Periféricos/cirugía , Animales , Miembro Anterior/cirugía , Masculino , Músculo Esquelético/cirugía , Regeneración Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley , Nervio Cubital/cirugía
10.
Front Neuroanat ; 15: 650761, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33828465

RESUMEN

The facial dermato-muscular system consists of highly specialized muscles tightly adhering to the overlaying skin and thus form a complex morphological conglomerate. This is the anatomical and functional basis for versatile facial expressions, which are essential for human social interaction. The neural innervation of the facial skin and muscles occurs via branches of the trigeminal and facial nerves. These are also the most commonly pathologically affected cranial nerves, often requiring surgical treatment. Hence, experimental models for researching these nerves and their pathologies are highly relevant to study pathophysiology and nerve regeneration. Experimental models for the distinctive investigation of the complex afferent and efferent interplay within facial structures are scarce. In this study, we established a robust surgical model for distinctive exploration of facial structures after complete elimination of afferent or efferent innervation in the rat. Animals were allocated into two groups according to the surgical procedure. In the first group, the facial nerve and in the second all distal cutaneous branches of the trigeminal nerve were transected unilaterally. All animals survived and no higher burden was caused by the procedures. Whisker pad movements were documented with video recordings 4 weeks after surgery and showed successful denervation. Whole-mount immunofluorescent staining of facial muscles was performed to visualize the innervation pattern of the neuromuscular junctions. Comprehensive quantitative analysis revealed large differences in afferent axon counts in the cutaneous branches of the trigeminal nerve. Axon number was the highest in the infraorbital nerve (28,625 ± 2,519), followed by the supraorbital nerve (2,131 ± 413), the mental nerve (3,062 ± 341), and the cutaneous branch of the mylohyoid nerve (343 ± 78). Overall, this surgical model is robust and reliable for distinctive surgical deafferentation or deefferentation of the face. It may be used for investigating cortical plasticity, the neurobiological mechanisms behind various clinically relevant conditions like facial paralysis or trigeminal neuralgia as well as local anesthesia in the face and oral cavity.

11.
Front Med (Lausanne) ; 7: 613138, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33363189

RESUMEN

Introduction: Current imaging modalities for peripheral nerves display the nerve's structure but not its function. Based on a nerve's capacity for axonal transport, it may be visualized by targeted application of a contrast agent and assessing the distribution through radiological imaging, thus revealing a nerve's continuity. This concept has not been explored, however, may potentially guide the treatment of peripheral nerve injuries. In this experimental proof-of-concept study, we tested imaging through MRI after administering gadolinium-based contrast agents which were then retrogradely transported. Methods: We synthesized MRI contrast agents consisting of paramagnetic agents and various axonal transport facilitators (HSA-DTPA-Gd, chitosan-DTPA-Gd or PLA/HSA-DTPA-Gd). First, we measured their relaxivity values in vitro to assess their radiological suitability. Subsequently, the sciatic nerve of 24 rats was cut and labeled with one of the contrast agents to achieve retrograde distribution along the nerve. One week after surgery, the spinal cords and sciatic nerves were harvested to visualize the distribution of the respective contrast agent using 7T MRI. In vivo MRI measurements were performed using 9.4 T MRI on the 1st, 3rd, and the 7th day after surgery. Following radiological imaging, the concentration of gadolinium in the harvested samples was analyzed using inductively coupled mass spectrometry (ICP-MS). Results: All contrast agents demonstrated high relaxivity values, varying between 12.1 and 116.0 mM-1s-1. HSA-DTPA-Gd and PLA/HSA-DTPA-Gd application resulted in signal enhancement in the vertebral canal and in the sciatic nerve in ex vivo MRI. In vivo measurements revealed significant signal enhancement in the sciatic nerve on the 3rd and 7th day after HSA-DTPA-Gd and chitosan-DTPA-Gd (p < 0.05) application. Chemical evaluation showed high gadolinium concentration in the sciatic nerve for HSA-DTPA-Gd (5.218 ± 0.860 ng/mg) and chitosan-DTPA-Gd (4.291 ± 1.290 ng/mg). Discussion: In this study a novel imaging approach for the evaluation of a peripheral nerve's integrity was implemented. The findings provide radiological and chemical evidence of successful contrast agent uptake along the sciatic nerve and its distribution within the spinal canal in rats. This novel concept may assist in the diagnostic process of peripheral nerve injuries in the future.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...