Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(40): e202308288, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37459561

RESUMEN

A strategy to engineer the stacking of diketopyrrolopyrrole (DPP) dyes based on non-statistical metallosupramolecular self-assembly is introduced. For this, the DPP backbone is equipped with nitrogen-based donors that allow for different discrete assemblies to be formed upon the addition of Pd(II), distinguished by the number of π-stacked chromophores. A Pd3 L6 three-ring, a heteroleptic Pd2 L2 L'2 ravel composed of two crossing DPPs (flanked by two carbazoles), and two unprecedented self-penetrated motifs (a Pd2 L3 triple and a Pd2 L4 quadruple stack), were obtained and systematically investigated. With increasing counts of stacked chromophores, UV/Vis absorptions red-shift and emission intensities decrease, except for compound Pd2 L2 L'2 , which stands out with an exceptional photoluminescence quantum yield of 51 %. This is extraordinary for open-shell metal containing assemblies and explainable by an intra-assembly FRET process. The modular design and synthesis of soluble multi-chromophore building blocks offers the potential for the preparation of nanodevices and materials with applications in sensing, photo-redox catalysis and optics.

2.
Nat Commun ; 12(1): 4097, 2021 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-34215743

RESUMEN

Stimuli-responsive flexible metal-organic frameworks (MOFs) remain at the forefront of porous materials research due to their enormous potential for various technological applications. Here, we introduce the concept of frustrated flexibility in MOFs, which arises from an incompatibility of intra-framework dispersion forces with the geometrical constraints of the inorganic building units. Controlled by appropriate linker functionalization with dispersion energy donating alkoxy groups, this approach results in a series of MOFs exhibiting a new type of guest- and temperature-responsive structural flexibility characterized by reversible loss and recovery of crystalline order under full retention of framework connectivity and topology. The stimuli-dependent phase change of the frustrated MOFs involves non-correlated deformations of their inorganic building unit, as probed by a combination of global and local structure techniques together with computer simulations. Frustrated flexibility may be a common phenomenon in MOF structures, which are commonly regarded as rigid, and thus may be of crucial importance for the performance of these materials in various applications.

3.
J Am Chem Soc ; 140(50): 17384-17388, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30516378

RESUMEN

Self-assembled, porous coordination cages with a functional interior find application in controlled guest inclusion/release, drug delivery, separation processes, and catalysis. However, only few studies exist that describe their utilization for the development of self-assembled materials based on their 3-dimensional shape and external functionalization. Here, dodecyl chain-containing, acridone-based ligands (LA) and shape-complementary phenanthrene-derived ligands (LB) are shown to self-assemble to heteroleptic coordination cages cis-[Pd2(LA)2(LB)2]4+ acting as a gemini amphiphile (CGA-1; Cage-based Gemini Amphiphile-1). Owing to their anisotropic decoration with short polar and long nonpolar side chains, the cationic cages were found to assemble into vesicles with diameters larger than 100 nm in suitable polar solvents, visualized by cryo-TEM and Liquid-Cell Transmission Electron Microscopy (LC-TEM). LC-TEM reveals that these vesicles aggregate into chains and necklaces via long-range interactions. In addition, the cages show a rarely described ability to stabilize oil-in-oil emulsions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...