Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Biotechnol ; 41(5): 626-630, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36411313

RESUMEN

The capture of metagenomic DNA in large clone libraries provides the opportunity to study microbial diversity that is inaccessible using culture-dependent methods. In this study, we harnessed nuclease-deficient Cas9 to establish a CRISPR counter-selection interruption circuit (CCIC) that can be used to retrieve target clones from complex libraries. Combining modern sequencing methods with CCIC cloning allows for rapid physical access to the genetic diversity present in natural ecosystems.


Asunto(s)
Ecosistema , Metagenómica , Células Clonales
2.
Nat Commun ; 13(1): 5256, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068239

RESUMEN

Bacterial genomes contain large reservoirs of biosynthetic gene clusters (BGCs) that are predicted to encode unexplored natural products. Heterologous expression of previously unstudied BGCs should facilitate the discovery of additional therapeutically relevant bioactive molecules from bacterial culture collections, but the large-scale manipulation of BGCs remains cumbersome. Here, we describe a method to parallelize the identification, mobilization and heterologous expression of BGCs. Our solution simultaneously captures large numbers of BGCs by cloning the genomes of a strain collection in a large-insert library and uses the CONKAT-seq (co-occurrence network analysis of targeted sequences) sequencing pipeline to efficiently localize clones carrying intact BGCs which represent candidates for heterologous expression. Our discovery of several natural products, including an antibiotic that is active against multi-drug resistant Staphylococcus aureus, demonstrates the potential of leveraging economies of scale with this approach to systematically interrogate cryptic BGCs contained in strain collections.


Asunto(s)
Productos Biológicos , Staphylococcus aureus Resistente a Meticilina , Antibacterianos , Productos Biológicos/metabolismo , Vías Biosintéticas/genética , Genoma Bacteriano/genética , Staphylococcus aureus Resistente a Meticilina/genética , Familia de Multigenes
3.
Nat Microbiol ; 7(1): 120-131, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34949828

RESUMEN

The emergence of multidrug-resistant bacteria poses a threat to global health and necessitates the development of additional in vivo active antibiotics with diverse modes of action. Directly targeting menaquinone (MK), which plays an important role in bacterial electron transport, is an appealing, yet underexplored, mode of action due to a dearth of MK-binding molecules. Here we combine sequence-based metagenomic mining with a motif search of bioinformatically predicted natural product structures to identify six biosynthetic gene clusters that we predicted encode MK-binding antibiotics (MBAs). Their predicted products (MBA1-6) were rapidly accessed using a synthetic bioinformatic natural product approach, which relies on bioinformatic structure prediction followed by chemical synthesis. Among these six structurally diverse MBAs, four make up two new MBA structural families. The most potent member of each new family (MBA3, MBA6) proved effective at treating methicillin-resistant Staphylococcus aureus infection in a murine peritonitis-sepsis model. The only conserved feature present in all MBAs is the sequence 'GXLXXXW', which we propose represents a minimum MK-binding motif. Notably, we found that a subset of MBAs were active against Mycobacterium tuberculosis both in vitro and in macrophages. Our findings suggest that naturally occurring MBAs are a structurally diverse and untapped class of mechanistically interesting, in vivo active antibiotics.


Asunto(s)
Antibacterianos/metabolismo , Antibacterianos/uso terapéutico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Vitamina K 2/metabolismo , Animales , Farmacorresistencia Bacteriana Múltiple , Femenino , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/microbiología , Metagenómica/métodos , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Ratones , Pruebas de Sensibilidad Microbiana , Mycobacterium tuberculosis/efectos de los fármacos , Peritonitis/tratamiento farmacológico , Peritonitis/microbiología , Infecciones Estafilocócicas/tratamiento farmacológico , Vitamina K 2/aislamiento & purificación
4.
J Am Chem Soc ; 142(33): 14158-14168, 2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32697091

RESUMEN

Bacterial natural products have inspired the development of numerous antibiotics in use today. As resistance to existing antibiotics has become more prevalent, new antibiotic lead structures and activities are desperately needed. An increasing number of natural product biosynthetic gene clusters, to which no known molecules can be assigned, are found in genome and metagenome sequencing data. Here we access structural information encoded in this underexploited resource using a synthetic-bioinformatic natural product (syn-BNP) approach, which relies on bioinformatic algorithms followed by chemical synthesis to predict and then produce small molecules inspired by biosynthetic gene clusters. In total, 157 syn-BNP cyclic peptides inspired by 96 nonribosomal peptide synthetase gene clusters were synthesized and screened for antibacterial activity. This yielded nine antibiotics with activities against ESKAPE pathogens as well as Mycobacterium tuberculosis. Not only are antibiotic-resistant pathogens susceptible to many of these syn-BNP antibiotics, but they were also unable to develop resistance to these antibiotics in laboratory experiments. Characterized modes of action for these antibiotics include cell lysis, membrane depolarization, inhibition of cell wall biosynthesis, and ClpP protease dysregulation. Increasingly refined syn-BNP-based explorations of biosynthetic gene clusters should allow for more rapid identification of evolutionarily inspired bioactive small molecules, in particular antibiotics with diverse mechanism of actions that could help confront the imminent crisis of antimicrobial resistance.


Asunto(s)
Antibacterianos/farmacología , Productos Biológicos/farmacología , Biología Computacional , Mycobacterium tuberculosis/efectos de los fármacos , Algoritmos , Antibacterianos/síntesis química , Antibacterianos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular
5.
Nat Commun ; 10(1): 3848, 2019 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-31451725

RESUMEN

Sequencing of DNA extracted from environmental samples can provide key insights into the biosynthetic potential of uncultured bacteria. However, the high complexity of soil metagenomes, which can contain thousands of bacterial species per gram of soil, imposes significant challenges to explore secondary metabolites potentially produced by rare members of the soil microbiome. Here, we develop a targeted sequencing workflow termed CONKAT-seq (co-occurrence network analysis of targeted sequences) that detects physically clustered biosynthetic domains, a hallmark of bacterial secondary metabolism. Following targeted amplification of conserved biosynthetic domains in a highly partitioned metagenomic library, CONKAT-seq evaluates amplicon co-occurrence patterns across library subpools to identify chromosomally clustered domains. We show that a single soil sample can contain more than a thousand uncharacterized biosynthetic gene clusters, most of which originate from low frequency genomes which are practically inaccessible through untargeted sequencing. CONKAT-seq allows scalable exploration of largely untapped biosynthetic diversity across multiple soils, and can guide the discovery of novel secondary metabolites from rare members of the soil microbiome.


Asunto(s)
Bacterias/metabolismo , Metagenoma/genética , Microbiota/genética , Metabolismo Secundario/genética , Microbiología del Suelo , Bacterias/genética , Vías Biosintéticas/genética , ADN Bacteriano/genética , Familia de Multigenes/genética , Análisis de Secuencia de ADN/métodos
6.
J Am Chem Soc ; 141(9): 3910-3919, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30735616

RESUMEN

The growing threat of antibiotic resistance necessitates the discovery of antibiotics that are active against resistant pathogens. Calcium-dependent antibiotics are a small family of structurally diverse acidic lipopeptides assembled by nonribosomal peptide synthetases (NRPSs) that are known to display various modes of action against antibiotic-resistant pathogens. Here we use NRPS adenylation (AD) domain sequencing to guide the identification, recovery, and cloning of the cde biosynthetic gene cluster from a soil metagenome. Heterologous expression of the cde biosynthetic gene cluster led to the production of cadasides A (1) and B (2), a subfamily of acidic lipopeptides that is distinct from previously characterized calcium-dependent antibiotics in terms of both overall structure and acidic residue rich peptide core. The cadasides inhibit the growth of multidrug-resistant Gram-positive pathogens by disrupting cell wall biosynthesis in the presence of high concentrations of calcium. Interestingly, sequencing of AD domains from diverse soils revealed that sequences predicted to arise from cadaside-like gene clusters are predominantly found in soils containing high levels of calcium carbonate.


Asunto(s)
Calcio/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Bacterias Grampositivas/efectos de los fármacos , Lipopéptidos/farmacología , Metagenoma/genética , Suelo/química , Calcio/química , Calcio/metabolismo , Concentración de Iones de Hidrógeno , Lipopéptidos/química , Lipopéptidos/metabolismo , Pruebas de Sensibilidad Microbiana , Péptido Sintasas/metabolismo , Conformación Proteica
7.
ACS Synth Biol ; 8(1): 109-118, 2019 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-30575381

RESUMEN

Most natural product biosynthetic gene clusters identified in bacterial genomic and metagenomic sequencing efforts are silent under laboratory growth conditions. Here, we describe a scalable biosynthetic gene cluster activation method wherein the gene clusters are disassembled at interoperonic regions in vitro using CRISPR/Cas9 and then reassembled with PCR-amplified, short DNAs, carrying synthetic promoters, using transformation assisted recombination (TAR) in yeast. This simple, cost-effective, and scalable method allows for the simultaneous generation of combinatorial libraries of refactored gene clusters, eliminating the need to understand the transcriptional hierarchy of the silent genes. In two test cases, this in vitro disassembly-TAR reassembly method was used to create collections of promoter-replaced gene clusters that were tested in parallel to identify versions that enabled secondary metabolite production. Activation of the atolypene ( ato) gene cluster led to the characterization of two unprecedented bacterial cyclic sesterterpenes, atolypene A (1) and B (2), which are moderately cytotoxic to human cancer cell lines. This streamlined in vitro disassembly- in vivo reassembly method offers a simplified approach for silent gene cluster refactoring that should facilitate the discovery of natural products from silent gene clusters cloned from either metagenomes or cultured bacteria.


Asunto(s)
Sesterterpenos/metabolismo , Productos Biológicos/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/fisiología , Minería de Datos , Metagenómica/métodos , Regiones Promotoras Genéticas/genética
8.
Nat Commun ; 9(1): 4147, 2018 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-30297823

RESUMEN

Rifamycin antibiotics (Rifs) target bacterial RNA polymerases (RNAPs) and are widely used to treat infections including tuberculosis. The utility of these compounds is threatened by the increasing incidence of resistance (RifR). As resistance mechanisms found in clinical settings may also occur in natural environments, here we postulated that bacteria could have evolved to produce rifamycin congeners active against clinically relevant resistance phenotypes. We survey soil metagenomes and identify a tailoring enzyme-rich family of gene clusters encoding biosynthesis of rifamycin congeners (kanglemycins, Kangs) with potent in vivo and in vitro activity against the most common clinically relevant RifR mutations. Our structural and mechanistic analyses reveal the basis for Kang inhibition of RifR RNAP. Unlike Rifs, Kangs function through a mechanism that includes interfering with 5'-initiating substrate binding. Our results suggest that examining soil microbiomes for new analogues of clinically used antibiotics may uncover metabolites capable of circumventing clinically important resistance mechanisms.


Asunto(s)
Farmacorresistencia Bacteriana/efectos de los fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Rifampin/farmacología , Tuberculosis/prevención & control , Aminobenzoatos/química , Antibióticos Antituberculosos/biosíntesis , Antibióticos Antituberculosos/química , Antibióticos Antituberculosos/farmacología , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Farmacorresistencia Bacteriana/genética , Humanos , Hidroxibenzoatos/química , Metagenómica/métodos , Estructura Molecular , Mutación , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Rifampin/química , Rifampin/metabolismo , Rifamicinas/química , Rifamicinas/farmacología , Microbiología del Suelo , Tuberculosis/microbiología
9.
Nat Microbiol ; 3(4): 415-422, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29434326

RESUMEN

Despite the wide availability of antibiotics, infectious diseases remain a leading cause of death worldwide 1 . In the absence of new therapies, mortality rates due to untreatable infections are predicted to rise more than tenfold by 2050. Natural products (NPs) made by cultured bacteria have been a major source of clinically useful antibiotics. In spite of decades of productivity, the use of bacteria in the search for new antibiotics was largely abandoned due to high rediscovery rates2,3. As only a fraction of bacterial diversity is regularly cultivated in the laboratory and just a fraction of the chemistries encoded by cultured bacteria are detected in fermentation experiments, most bacterial NPs remain hidden in the global microbiome. In an effort to access these hidden NPs, we have developed a culture-independent NP discovery platform that involves sequencing, bioinformatic analysis and heterologous expression of biosynthetic gene clusters captured on DNA extracted from environmental samples. Here, we describe the application of this platform to the discovery of the malacidins, a distinctive class of antibiotics that are commonly encoded in soil microbiomes but have never been reported in culture-based NP discovery efforts. The malacidins are active against multidrug-resistant pathogens, sterilize methicillin-resistant Staphylococcus aureus skin infections in an animal wound model and did not select for resistance under our laboratory conditions.


Asunto(s)
Antibacterianos/farmacología , Calcio/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Lipopéptidos/farmacología , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Péptidos Cíclicos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Línea Celular , Daptomicina/farmacología , Células HEK293 , Humanos , Pruebas de Sensibilidad Microbiana , Ratas , Microbiología del Suelo
10.
mSphere ; 3(1)2018.
Artículo en Inglés | MEDLINE | ID: mdl-29404414

RESUMEN

The antibiotic paenimucillin A was originally identified using a culture-independent synthetic-bioinformatic natural product (syn-BNP) discovery approach. Here we report on a bioinformatics-guided survey of paenimucillin A analogs that led to the discovery of paenimucillin C. Paenimucillin C inhibits the growth of multidrug-resistant (MDR) Acinetobacter baumannii clinical isolates, as well as other Gram-negative bacterial pathogens. In a rat cutaneous wound model, it completely sterilized MDR A. baumannii wound infections with no sign of rebound. Mechanistic studies point to a membrane-associated mode of action that results in leakage of intracellular contents. IMPORTANCE Natural product-inspired antibiotics have saved millions of lives and played a critical role in modern medicine. However, the emergence of drug-resistant pathogens is outpacing the rate at which new clinically useful antibiotics are being discovered. The lack of a means to combat infections caused by multidrug-resistant (MDR) Acinetobacter baumannii is of particular concern. The sharp increase in cases of MDR A. baumannii infections in recent years prompted the CDC (https://www.cdc.gov/drugresistance/biggest_threats.html) and WHO (http://www.who.int/medicines/publications/global-priority-list-antibiotic-resistant-bacteria/en/) to list this pathogen as a "serious threat" and "critical pathogen," respectively. Here we report a new antibiotic, paenimucillin C, active against Gram-negative bacterial pathogens, including many clinical isolates of MDR A. baumannii strains. Mechanistic studies point to membrane disruption leading to leakage of intracellular contents as its antibacterial mode of action. Paenimucillin C sterilizes MDR A. baumannii infections in a rat cutaneous wound model with no sign of rebound infection, providing a potential new therapeutic regimen.

11.
FEMS Microbiol Lett ; 364(16)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28817927

RESUMEN

The majority of environmental bacteria are not readily cultured in the lab, leaving the natural products they make inaccessible using culture-dependent discovery methods. Cloning and heterologous expression of DNA extracted from environmental samples (environmental DNA, eDNA) provides a means of circumventing this discovery bottleneck. To facilitate the identification of clones containing biosynthetic gene clusters, we developed a model heterologous expression reporter strain Streptomyces albus::bpsA ΔPPTase. This strain carries a 4΄-phosphopantetheinyl transferase (PPTase)-dependent blue pigment synthase A gene, bpsA, in a PPTase deletion background. eDNA clones that express a functional PPTase restore production of the blue pigment, indigoidine. As PPTase genes often occur in biosynthetic gene clusters (BGCs), indigoidine production can be used to identify eDNA clones containing BGCs. We screened a soil eDNA library hosted in S. albus::bpsA ΔPPTase and identified clones containing non-ribosomal peptide synthetase (NRPS), polyketide synthase (PKS) and mixed NRPS/PKS biosynthetic gene clusters. One NRPS gene cluster was shown to confer the production of myxochelin A to S. albus::bpsA ΔPPTase.


Asunto(s)
Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Clonación Molecular/métodos , Genes Bacterianos , Metagenoma/genética , Familia de Multigenes , Streptomyces/genética , Transferasas (Grupos de Otros Fosfatos Sustitutos)/clasificación , Transferasas (Grupos de Otros Fosfatos Sustitutos)/genética , Productos Biológicos , Cósmidos , Escherichia coli/genética , Prueba de Complementación Genética , Biblioteca Genómica , Metagenómica , Péptido Sintasas/genética , Filogenia , Piperidonas/metabolismo , Microbiología del Suelo
12.
J Am Chem Soc ; 139(4): 1404-1407, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28055186

RESUMEN

Bacterial culture broth extracts have been the starting point for the development of numerous therapeutics. However, only a small fraction of bacterial biosynthetic diversity is accessible using this strategy. Here, we apply a discovery approach that bypasses the culturing step entirely by bioinformatically predicting small molecule structures from the primary sequences of the biosynthetic gene clusters. These structures are then chemically synthesized to give synthetic-bioinformatic natural products (syn-BNPs). Using this approach, we screened syn-BNPs inspired by nonribosomal peptide synthetases against microbial pathogens, and discovered an antibiotic for which no resistance could be identified and an antifungal agent with activity against diverse fungal pathogens.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Bacterias/efectos de los fármacos , Productos Biológicos/farmacología , Hongos/efectos de los fármacos , Péptido Sintasas/genética , Antibacterianos/química , Antibacterianos/metabolismo , Antifúngicos/química , Antifúngicos/metabolismo , Productos Biológicos/química , Productos Biológicos/metabolismo , Biología Computacional , Pruebas de Sensibilidad Microbiana , Familia de Multigenes , Péptido Sintasas/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(51): 14811-14816, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27911822

RESUMEN

Numerous therapeutically relevant small molecules have been identified from the screening of natural products (NPs) produced by environmental bacteria. These discovery efforts have principally focused on culturing bacteria from natural environments rich in biodiversity. We sought to assess the biosynthetic capacity of urban soil environments using a phylogenetic analysis of conserved NP biosynthetic genes amplified directly from DNA isolated from New York City park soils. By sequencing genes involved in the biosynthesis of nonribosomal peptides and polyketides, we found that urban park soil microbiomes are both rich in biosynthetic diversity and distinct from nonurban samples in their biosynthetic gene composition. A comparison of sequences derived from New York City parks to genes involved in the biosynthesis of biomedically important NPs produced by bacteria originally collected from natural environments around the world suggests that bacteria producing these same families of clinically important antibiotics, antifungals, and anticancer agents are actually present in the soils of New York City. The identification of new bacterial NPs often centers on the systematic exploration of bacteria present in natural environments. Here, we find that the soil microbiomes found in large cities likely hold similar promise as rich unexplored sources of clinically relevant NPs.


Asunto(s)
Bacterias/genética , Parques Recreativos , Microbiología del Suelo , Suelo/química , Biodiversidad , Productos Biológicos , Diseño de Fármacos , Metagenoma , Microbiota , Ciudad de Nueva York , Filogenia , Análisis de Secuencia de ADN
14.
Proc Natl Acad Sci U S A ; 112(35): E4825-34, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26283367

RESUMEN

The trillions of bacteria that make up the human microbiome are believed to encode functions that are important to human health; however, little is known about the specific effectors that commensal bacteria use to interact with the human host. Functional metagenomics provides a systematic means of surveying commensal DNA for genes that encode effector functions. Here, we examine 3,000 Mb of metagenomic DNA cloned from three phenotypically distinct patients for effectors that activate NF-κB, a transcription factor known to play a central role in mediating responses to environmental stimuli. This screen led to the identification of 26 unique commensal bacteria effector genes (Cbegs) that are predicted to encode proteins with diverse catabolic, anabolic, and ligand-binding functions and most frequently interact with either glycans or lipids. Detailed analysis of one effector gene family (Cbeg12) recovered from all three patient libraries found that it encodes for the production of N-acyl-3-hydroxypalmitoyl-glycine (commendamide). This metabolite was also found in culture broth from the commensal bacterium Bacteroides vulgatus, which harbors a gene highly similar to Cbeg12. Commendamide resembles long-chain N-acyl-amides that function as mammalian signaling molecules through activation of G-protein-coupled receptors (GPCRs), which led us to the observation that commendamide activates the GPCR G2A/GPR132. G2A has been implicated in disease models of autoimmunity and atherosclerosis. This study shows the utility of functional metagenomics for identifying potential mechanisms used by commensal bacteria for host interactions and outlines a functional metagenomics-based pipeline for the systematic identification of diverse commensal bacteria effectors that impact host cellular functions.


Asunto(s)
Glicina/análogos & derivados , Metagenómica , Microbiota , Palmitatos/farmacología , Receptores Acoplados a Proteínas G/agonistas , ADN/genética , Glicina/farmacología , Células HEK293 , Humanos , Microscopía Fluorescente , Datos de Secuencia Molecular , Filogenia
15.
Proc Natl Acad Sci U S A ; 112(14): 4221-6, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25831524

RESUMEN

In molecular evolutionary analyses, short DNA sequences are used to infer phylogenetic relationships among species. Here we apply this principle to the study of bacterial biosynthesis, enabling the targeted isolation of previously unidentified natural products directly from complex metagenomes. Our approach uses short natural product sequence tags derived from conserved biosynthetic motifs to profile biosynthetic diversity in the environment and then guide the recovery of gene clusters from metagenomic libraries. The methodology is conceptually simple, requires only a small investment in sequencing, and is not computationally demanding. To demonstrate the power of this approach to natural product discovery we conducted a computational search for epoxyketone proteasome inhibitors within 185 globally distributed soil metagenomes. This led to the identification of 99 unique epoxyketone sequence tags, falling into 6 phylogenetically distinct clades. Complete gene clusters associated with nine unique tags were recovered from four saturating soil metagenomic libraries. Using heterologous expression methodologies, seven potent epoxyketone proteasome inhibitors (clarepoxcins A-E and landepoxcins A and B) were produced from these pathways, including compounds with different warhead structures and a naturally occurring halohydrin prodrug. This study provides a template for the targeted expansion of bacterially derived natural products using the global metagenome.


Asunto(s)
Biología Computacional/métodos , Cetonas/química , Inhibidores de Proteasoma/química , Microbiología del Suelo , ADN/química , Diseño de Fármacos , Descubrimiento de Drogas , Variación Genética , Genoma , Genoma Bacteriano , Geografía , Espectroscopía de Resonancia Magnética , Metagenoma , Metagenómica , Datos de Secuencia Molecular , Familia de Multigenes , Péptidos/química , Filogenia , Policétidos/química , Complejo de la Endopetidasa Proteasomal/química , Programas Informáticos
16.
J Am Chem Soc ; 137(18): 6044-52, 2015 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-25872030

RESUMEN

Natural product discovery from environmental genomes (metagenomics) has largely been limited to the screening of existing environmental DNA (eDNA) libraries. Here, we have coupled a chemical-biogeographic survey of chromopyrrolic acid synthase (CPAS) gene diversity with targeted eDNA library production to more efficiently access rare tryptophan dimer (TD) biosynthetic gene clusters. A combination of traditional and synthetic biology-based heterologous expression efforts using eDNA-derived gene clusters led to the production of hydroxysporine (1) and reductasporine (2), two bioactive TDs. As suggested by our phylogenetic analysis of CPAS genes, identified in our survey of crude eDNA extracts, reductasporine (2) contains an unprecedented TD core structure: a pyrrolinium indolocarbazole core that is likely key to its unusual bioactivity profile. This work demonstrates the potential for the discovery of structurally rare and biologically interesting natural products using targeted metagenomics, where environmental samples are prescreened to identify the most phylogenetically unique gene sequences and molecules associated with these genes are accessed through targeted metagenomic library construction and heterologous expression.


Asunto(s)
Productos Biológicos/química , Dimerización , Metagenómica , Triptófano/química , ADN/genética , Enzimas/genética , Enzimas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oxidorreductasas
17.
Elife ; 4: e05048, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25599565

RESUMEN

Recent bacterial (meta)genome sequencing efforts suggest the existence of an enormous untapped reservoir of natural-product-encoding biosynthetic gene clusters in the environment. Here we use the pyro-sequencing of PCR amplicons derived from both nonribosomal peptide adenylation domains and polyketide ketosynthase domains to compare biosynthetic diversity in soil microbiomes from around the globe. We see large differences in domain populations from all except the most proximal and biome-similar samples, suggesting that most microbiomes will encode largely distinct collections of bacterial secondary metabolites. Our data indicate a correlation between two factors, geographic distance and biome-type, and the biosynthetic diversity found in soil environments. By assigning reads to known gene clusters we identify hotspots of biomedically relevant biosynthetic diversity. These observations not only provide new insights into the natural world, they also provide a road map for guiding future natural products discovery efforts.


Asunto(s)
Bacterias/metabolismo , Filogeografía , Metabolismo Secundario , Bacterias/enzimología , Secuencia de Bases , Biodiversidad , Productos Biológicos/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/metabolismo , Estructura Terciaria de Proteína
18.
J Am Chem Soc ; 136(26): 9484-90, 2014 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-24884988

RESUMEN

Increasing evidence has shown that small-molecule chemistry in microbes (i.e., secondary metabolism) can modulate the microbe-host response in infection and pathogenicity. The bacterial disease melioidosis is conferred by the highly virulent, antibiotic-resistant pathogen Burkholderia pseudomallei (BP). Whereas some macromolecular structures have been shown to influence BP virulence (e.g., secretion systems, cellular capsule, pili), the role of the large cryptic secondary metabolome encoded within its genome has been largely unexplored for its importance to virulence. Herein we demonstrate that BP-encoded small-molecule biosynthesis is indispensible for in vivo BP pathogenicity. Promoter exchange experiments were used to induce high-level molecule production from two gene clusters (MPN and SYR) found to be essential for in vivo virulence. NMR structural characterization of these metabolites identified a new class of lipopeptide biosurfactants/biofilm modulators (the malleipeptins) and syrbactin-type proteasome inhibitors, both of which represent overlooked small-molecule virulence factors for BP. Disruption of Burkholderia virulence by inhibiting the biosynthesis of these small-molecule biosynthetic pathways may prove to be an effective strategy for developing novel melioidosis-specific therapeutics.


Asunto(s)
Burkholderia pseudomallei/metabolismo , Burkholderia pseudomallei/patogenicidad , Metabolismo Secundario , Factores de Virulencia/química , Factores de Virulencia/metabolismo , Animales , Burkholderia pseudomallei/química , Burkholderia pseudomallei/genética , Femenino , Genoma Bacteriano , Recombinación Homóloga , Lipopéptidos/química , Lipopéptidos/metabolismo , Lipopéptidos/farmacología , Lisina/análogos & derivados , Lisina/química , Lisina/metabolismo , Lisina/farmacología , Melioidosis/microbiología , Ratones Endogámicos BALB C , Familia de Multigenes , Mutación , Péptidos Cíclicos/química , Péptidos Cíclicos/metabolismo , Péptidos Cíclicos/farmacología , Regiones Promotoras Genéticas , Factores de Virulencia/genética
19.
Proc Natl Acad Sci U S A ; 111(10): 3757-62, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24550451

RESUMEN

In this study, we compare biosynthetic gene richness and diversity of 96 soil microbiomes from diverse environments found throughout the southwestern and northeastern regions of the United States. The 454-pyroseqencing of nonribosomal peptide adenylation (AD) and polyketide ketosynthase (KS) domain fragments amplified from these microbiomes provide a means to evaluate the variation of secondary metabolite biosynthetic diversity in different soil environments. Through soil composition and AD- and KS-amplicon richness analysis, we identify soil types with elevated biosynthetic potential. In general, arid soils show the richest observed biosynthetic diversity, whereas brackish sediments and pine forest soils show the least. By mapping individual environmental amplicon sequences to sequences derived from functionally characterized biosynthetic gene clusters, we identified conserved soil type-specific secondary metabolome enrichment patterns despite significant sample-to-sample sequence variation. These data are used to create chemical biogeographic distribution maps for biomedically valuable families of natural products in the environment that should prove useful for directing the discovery of bioactive natural products in the future.


Asunto(s)
Variación Genética , Metaboloma/genética , Microbiota/genética , Microbiología del Suelo , Suelo/química , Análisis por Conglomerados , Mapeo Geográfico , Familia de Multigenes/genética , New England , Filogeografía , Metabolismo Secundario/genética , Sudoeste de Estados Unidos
20.
J Am Chem Soc ; 135(47): 17906-12, 2013 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-24171465

RESUMEN

Here we investigate bacterial tryptophan dimer (TD) biosynthesis by probing environmental DNA (eDNA) libraries for chromopyrrolic acid (CPA) synthase genes. Functional and bioinformatics analyses of TD clusters indicate that CPA synthase gene sequences diverge in concert with the functional output of their respective clusters, making this gene a powerful tool for guiding the discovery of novel TDs from the environment. Twelve unprecedented TD biosynthetic gene clusters that can be arranged into five groups (A-E) based on their ability to generate distinct TD core substructures were recovered from eDNA libraries. Four of these groups contain clusters from both cultured and culture independent studies, while the remaining group consists entirely of eDNA-derived clusters. The complete synthetic refactoring of a representative gene cluster from the latter eDNA specific group led to the characterization of the erdasporines, cytotoxins with a novel carboxy-indolocarbazole TD substructure. Analysis of CPA synthase genes in crude eDNA suggests the presence of additional TD gene clusters in soil environments.


Asunto(s)
Enzimas/genética , Proteínas de Escherichia coli/genética , Escherichia coli/genética , Familia de Multigenes , Triptófano/genética , Línea Celular , Biología Computacional , Ambiente , Biblioteca de Genes , Genes Bacterianos , Humanos , Oxidorreductasas , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...