Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Bioinform ; 3: 1275402, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928169

RESUMEN

Introduction: Tissue-based sampling and diagnosis are defined as the extraction of information from certain limited spaces and its diagnostic significance of a certain object. Pathologists deal with issues related to tumor heterogeneity since analyzing a single sample does not necessarily capture a representative depiction of cancer, and a tissue biopsy usually only presents a small fraction of the tumor. Many multiplex tissue imaging platforms (MTIs) make the assumption that tissue microarrays (TMAs) containing small core samples of 2-dimensional (2D) tissue sections are a good approximation of bulk tumors although tumors are not 2D. However, emerging whole slide imaging (WSI) or 3D tumor atlases that use MTIs like cyclic immunofluorescence (CyCIF) strongly challenge this assumption. In spite of the additional insight gathered by measuring the tumor microenvironment in WSI or 3D, it can be prohibitively expensive and time-consuming to process tens or hundreds of tissue sections with CyCIF. Even when resources are not limited, the criteria for region of interest (ROI) selection in tissues for downstream analysis remain largely qualitative and subjective as stratified sampling requires the knowledge of objects and evaluates their features. Despite the fact TMAs fail to adequately approximate whole tissue features, a theoretical subsampling of tissue exists that can best represent the tumor in the whole slide image. Methods: To address these challenges, we propose deep learning approaches to learn multi-modal image translation tasks from two aspects: 1) generative modeling approach to reconstruct 3D CyCIF representation and 2) co-embedding CyCIF image and Hematoxylin and Eosin (H&E) section to learn multi-modal mappings by a cross-domain translation for minimum representative ROI selection. Results and discussion: We demonstrate that generative modeling enables a 3D virtual CyCIF reconstruction of a colorectal cancer specimen given a small subset of the imaging data at training time. By co-embedding histology and MTI features, we propose a simple convex optimization for objective ROI selection. We demonstrate the potential application of ROI selection and the efficiency of its performance with respect to cellular heterogeneity.

2.
Nat Commun ; 14(1): 5665, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704631

RESUMEN

Triple-negative breast cancer (TNBC) patients have a poor prognosis and few treatment options. Mouse models of TNBC are important for development of new therapies, however, few mouse models represent the complexity of TNBC. Here, we develop a female TNBC murine model by mimicking two common TNBC mutations with high co-occurrence: amplification of the oncogene MYC and deletion of the tumor suppressor PTEN. This Myc;Ptenfl model develops heterogeneous triple-negative mammary tumors that display histological and molecular features commonly found in human TNBC. Our research involves deep molecular and spatial analyses on Myc;Ptenfl tumors including bulk and single-cell RNA-sequencing, and multiplex tissue-imaging. Through comparison with human TNBC, we demonstrate that this genetic mouse model develops mammary tumors with differential survival and therapeutic responses that closely resemble the inter- and intra-tumoral and microenvironmental heterogeneity of human TNBC, providing a pre-clinical tool for assessing the spectrum of patient TNBC biology and drug response.


Asunto(s)
Neoplasias Mamarias Animales , Neoplasias de la Mama Triple Negativas , Animales , Femenino , Humanos , Ratones , Agresión , Modelos Animales de Enfermedad , Mutación , Fosfohidrolasa PTEN/genética , Neoplasias de la Mama Triple Negativas/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo
3.
bioRxiv ; 2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37547011

RESUMEN

The National Cancer Institute (NCI) supports many research programs and consortia, many of which use imaging as a major modality for characterizing cancerous tissue. A trans-consortia Image Analysis Working Group (IAWG) was established in 2019 with a mission to disseminate imaging-related work and foster collaborations. In 2022, the IAWG held a virtual hackathon focused on addressing challenges of analyzing high dimensional datasets from fixed cancerous tissues. Standard image processing techniques have automated feature extraction, but the next generation of imaging data requires more advanced methods to fully utilize the available information. In this perspective, we discuss current limitations of the automated analysis of multiplexed tissue images, the first steps toward deeper understanding of these limitations, what possible solutions have been developed, any new or refined approaches that were developed during the Image Analysis Hackathon 2022, and where further effort is required. The outstanding problems addressed in the hackathon fell into three main themes: 1) challenges to cell type classification and assessment, 2) translation and visual representation of spatial aspects of high dimensional data, and 3) scaling digital image analyses to large (multi-TB) datasets. We describe the rationale for each specific challenge and the progress made toward addressing it during the hackathon. We also suggest areas that would benefit from more focus and offer insight into broader challenges that the community will need to address as new technologies are developed and integrated into the broad range of image-based modalities and analytical resources already in use within the cancer research community.

4.
PLoS Comput Biol ; 18(9): e1010505, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36178966

RESUMEN

Recent state-of-the-art multiplex imaging techniques have expanded the depth of information that can be captured within a single tissue sample by allowing for panels with dozens of markers. Despite this increase in capacity, space on the panel is still limited due to technical artifacts, tissue loss, and long imaging acquisition time. As such, selecting which markers to include on a panel is important, since removing important markers will result in a loss of biologically relevant information, but identifying redundant markers will provide a room for other markers. To address this, we propose computational approaches to determine the amount of shared information between markers and select an optimally reduced panel that captures maximum amount of information with the fewest markers. Here we examine several panel selection approaches and evaluate them based on their ability to reconstruct the full panel images and information within breast cancer tissue microarray datasets using cyclic immunofluorescence as a proof of concept. We show that all methods perform adequately and can re-capture cell types using only 18 of 25 markers (72% of the original panel size). The correlation-based selection methods achieved the best single-cell marker mean intensity predictions with a Spearman correlation of 0.90 with the reduced panel. Using the proposed methods shown here, it is possible for researchers to design more efficient multiplex imaging panels that maximize the amount of information retained with the limited number of markers with respect to certain evaluation metrics and architecture biases.


Asunto(s)
Neoplasias de la Mama , Artefactos , Biomarcadores , Femenino , Humanos
5.
Commun Biol ; 5(1): 255, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35322205

RESUMEN

Image-based cell phenotyping relies on quantitative measurements as encoded representations of cells; however, defining suitable representations that capture complex imaging features is challenged by the lack of robust methods to segment cells, identify subcellular compartments, and extract relevant features. Variational autoencoder (VAE) approaches produce encouraging results by mapping an image to a representative descriptor, and outperform classical hand-crafted features for morphology, intensity, and texture at differentiating data. Although VAEs show promising results for capturing morphological and organizational features in tissue, single cell image analyses based on VAEs often fail to identify biologically informative features due to uninformative technical variation. Here we propose a multi-encoder VAE (ME-VAE) in single cell image analysis using transformed images as a self-supervised signal to extract transform-invariant biologically meaningful features, including emergent features not obvious from prior knowledge. We show that the proposed architecture improves analysis by making distinct cell populations more separable compared to traditional and recent extensions of VAE architectures and intensity measurements by enhancing phenotypic differences between cells and by improving correlations to other analytic modalities. Better feature extraction and image analysis methods enabled by the ME-VAE will advance our understanding of complex cell biology and enable discoveries previously hidden behind image complexity ultimately improving medical outcomes and drug discovery.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Análisis de la Célula Individual
6.
Sci Rep ; 10(1): 20904, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-33262400

RESUMEN

Mechanistic disease progression studies using animal models require objective and quantifiable assessment of tissue pathology. Currently quantification relies heavily on staining methods which can be expensive, labor/time-intensive, inconsistent across laboratories and batch, and produce uneven staining that is prone to misinterpretation and investigator bias. We developed an automated semantic segmentation tool utilizing deep learning for rapid and objective quantification of histologic features relying solely on hematoxylin and eosin stained pancreatic tissue sections. The tool segments normal acinar structures, the ductal phenotype of acinar-to-ductal metaplasia (ADM), and dysplasia with Dice coefficients of 0.79, 0.70, and 0.79, respectively. To deal with inaccurate pixelwise manual annotations, prediction accuracy was also evaluated against biological truth using immunostaining mean structural similarity indexes (SSIM) of 0.925 and 0.920 for amylase and pan-keratin respectively. Our tool's disease area quantifications were correlated to the quantifications of immunostaining markers (DAPI, amylase, and cytokeratins; Spearman correlation score = 0.86, 0.97, and 0.92) in unseen dataset (n = 25). Moreover, our tool distinguishes ADM from dysplasia, which are not reliably distinguished with immunostaining, and demonstrates generalizability across murine cohorts with pancreatic disease. We quantified the changes in histologic feature abundance for murine cohorts with oncogenic Kras-driven disease, and the predictions fit biological expectations, showing stromal expansion, a reduction of normal acinar tissue, and an increase in both ADM and dysplasia as disease progresses. Our tool promises to accelerate and improve the quantification of pancreatic disease in animal studies and become a unifying quantification tool across laboratories.


Asunto(s)
Neoplasias Pancreáticas/diagnóstico , Animales , Automatización , Transformación Celular Neoplásica , Estudios de Cohortes , Ratones , Páncreas/patología , Neoplasias Pancreáticas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...