Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38328138

RESUMEN

Human type-II topoisomerases, TOP2A and TOP2B, remove transcription associated DNA supercoiling, thereby affecting gene-expression programs, and have recently been associated with 3D genome architecture. Here, we study the regulatory roles of TOP2 paralogs in response to estrogen, which triggers an acute transcriptional induction that involves rewiring of genome organization. We find that, whereas TOP2A facilitates transcription, as expected for a topoisomerase, TOP2B limits the estrogen response. Consistent with this, TOP2B activity is locally downregulated upon estrogen treatment to favor the establishment and stabilization of regulatory chromatin contacts, likely through an accumulation of DNA supercoiling. We show that estrogen-mediated inhibition of TOP2B requires estrogen receptor α (ERα), a non-catalytic function of TOP2A, and the action of the atypical SUMO-ligase ZATT. This mechanism of topological transcriptional-control, which may be shared by additional gene-expression circuits, highlights the relevance of DNA topoisomerases as central actors of genome dynamics.

2.
Cell Rep ; 35(2): 108977, 2021 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-33852840

RESUMEN

Accumulation of topological stress in the form of DNA supercoiling is inherent to the advance of RNA polymerase II (Pol II) and needs to be resolved by DNA topoisomerases to sustain productive transcriptional elongation. Topoisomerases are therefore considered positive facilitators of transcription. Here, we show that, in contrast to this general assumption, human topoisomerase IIα (TOP2A) activity at promoters represses transcription of immediate early genes such as c-FOS, maintaining them under basal repressed conditions. Thus, TOP2A inhibition creates a particular topological context that results in rapid release from promoter-proximal pausing and transcriptional upregulation, which mimics the typical bursting behavior of these genes in response to physiological stimulus. We therefore describe the control of promoter-proximal pausing by TOP2A as a layer for the regulation of gene expression, which can act as a molecular switch to rapidly activate transcription, possibly by regulating the accumulation of DNA supercoiling at promoter regions.


Asunto(s)
ADN-Topoisomerasas de Tipo II/genética , ADN Superhelicoidal/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Proteínas Proto-Oncogénicas c-fos/genética , ARN Polimerasa II/genética , Transcripción Genética , Línea Celular Transformada , ADN-Topoisomerasas de Tipo II/metabolismo , ADN Superhelicoidal/metabolismo , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Epiteliales/enzimología , Regulación de la Expresión Génica , Genes Inmediatos-Precoces , Humanos , Proteínas de Unión a Poli-ADP-Ribosa/antagonistas & inhibidores , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Polimerasa II/metabolismo , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/enzimología , Tiobarbitúricos/farmacología , Inhibidores de Topoisomerasa II/farmacología
3.
PLoS Comput Biol ; 17(1): e1007814, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33465072

RESUMEN

DNA topoisomerase II-ß (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.


Asunto(s)
Cromatina , ADN-Topoisomerasas de Tipo II , Genoma/genética , Modelos Genéticos , Animales , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , Genómica , Humanos , Células MCF-7 , Aprendizaje Automático , Ratones , Unión Proteica , Timocitos
4.
Nat Commun ; 11(1): 910, 2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060399

RESUMEN

The ATM kinase is a master regulator of the DNA damage response to double-strand breaks (DSBs) and a well-established tumour suppressor whose loss is the cause of the neurodegenerative and cancer-prone syndrome Ataxia-Telangiectasia (A-T). A-T patients and Atm-/- mouse models are particularly predisposed to develop lymphoid cancers derived from deficient repair of RAG-induced DSBs during V(D)J recombination. Here, we unexpectedly find that specifically disturbing the repair of DSBs produced by DNA topoisomerase II (TOP2) by genetically removing the highly specialised repair enzyme TDP2 increases the incidence of thymic tumours in Atm-/- mice. Furthermore, we find that TOP2 strongly colocalizes with RAG, both genome-wide and at V(D)J recombination sites, resulting in an increased endogenous chromosomal fragility of these regions. Thus, our findings demonstrate a strong causal relationship between endogenous TOP2-induced DSBs and cancer development, confirming these lesions as major drivers of ATM-deficient lymphoid malignancies, and potentially other conditions and cancer types.


Asunto(s)
Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo II/metabolismo , Neoplasias del Timo/epidemiología , Animales , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Reparación del ADN , ADN-Topoisomerasas de Tipo II/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Humanos , Ratones , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Neoplasias del Timo/genética
5.
World J Stem Cells ; 9(2): 26-36, 2017 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-28289506

RESUMEN

Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA