Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 60(31): H37-H44, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807197

RESUMEN

The material emitted from a target surface during laser ablation generates a net thrust (propulsion) in the opposite direction. The momentum generation efficiency of this laser-driven propulsion is given by the mechanical coupling coefficient (Cm). In this work, we considered nanosecond UV laser ablation of the aluminum 6061 alloy to study the Cm behavior with different irradiating conditions. This is done by systematically changing fluence, uniform/nonuniform intensity, and incident angle of the laser beam. In particular, we found that when dealing with nonuniform laser intensity, characterizing Cm exclusively in terms of fluence is not fully satisfactory because the energy distribution over the irradiated area plays a key role in the way material is removed-interplay between vaporization and phase explosion-and thrust is generated.

2.
Micromachines (Basel) ; 12(3)2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33809316

RESUMEN

The complexity of the phenomena simultaneously occurring, from the very first instants of high-power laser pulse interaction with the target up to the phase explosion, along with the strong changes in chemical-physical properties of matter, makes modeling laser ablation a hard task, especially near the thermodynamic critical regime. In this work, we report a computational model of an aluminum target irradiated in vacuum by a gaussian-shaped pulse of 20 ns duration, with a peak intensity of the order of GW/cm2. This continuum model covers laser energy deposition and temperature evolution in the irradiated target, along with the mass removal mechanism involved, and the vaporized material expansion. Aluminum was considered to be a case study due to the vast literature on the temperature dependence of its thermodynamic, optical, and transport properties that were used to estimate time-dependent values of surface-vapor quantities (vapor pressure, vapor density, vapor and surface temperature) and vapor gas-dynamical quantities (density, velocity, pressure) as it expands into vacuum. Very favorable agreement is reported with experimental data regarding: mass removal and crater depth due to vaporization, generated recoil momentum, and vapor flow velocity expansion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...