Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Biol ; 11(14): 1089-97, 2001 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-11509231

RESUMEN

BACKGROUND: Glutamate-induced Ca2+ oscillations and waves coordinate astrocyte signaling responses, which in turn regulate neuronal excitability. Recent studies have suggested that the generation of these Ca2+ oscillations requires a negative feedback that involves the activation of conventional protein kinase C (cPKC). Here, we use total internal reflection fluorescence (TIRF) microscopy to investigate if and how periodic plasma membrane translocation of cPKC is used to generate Ca2+ oscillations and waves. RESULTS: Glutamate stimulation of astrocytes triggered highly localized GFP-PKCgamma plasma membrane translocation events, induced rapid oscillations in GFP-PKCgamma translocation, and generated GFP-PKCgamma translocation waves that propagated across and between cells. These translocation responses were primarily mediated by the Ca2+-sensitive C2 domains of PKCgamma and were driven by localized Ca2+ spikes, by oscillations in Ca2+ concentration, and by propagating Ca(2+) waves, respectively. Interestingly, GFP-conjugated C1 domains from PKCgamma or PKCdelta that have been shown to bind diacylglycerol (DAG) also oscillated between the cytosol and the plasma membrane after glutamate stimulation, suggesting that PKC is repetitively activated by combined oscillating increases in Ca(2+) and DAG concentrations. The expression of C1 domains, which increases the DAG buffering capacity and thereby delays changes in DAG concentrations, led to a marked prolongation of Ca(2+) spikes, suggesting that PKC activation is involved in terminating individual Ca(2+) spikes and waves and in defining the time period between Ca(2+) spikes. CONCLUSIONS: Our study suggests that cPKCs have a negative feedback role on Ca(2+) oscillations and waves that is mediated by their repetitive activation by oscillating DAG and Ca(2+) concentrations. Periodic translocation and activation of cPKC can be a rapid and markedly localized signaling event that can limit the duration of individual Ca(2+) spikes and waves and can define the Ca(2+) spike and wave frequencies.


Asunto(s)
Astrocitos/metabolismo , Señalización del Calcio/fisiología , Isoenzimas/metabolismo , Proteína Quinasa C/metabolismo , Animales , Astrocitos/efectos de los fármacos , Sitios de Unión , Transporte Biológico Activo/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Células Cultivadas , Diglicéridos/metabolismo , Activación Enzimática/efectos de los fármacos , Retroalimentación , Ácido Glutámico/efectos de los fármacos , Isoenzimas/química , Isoenzimas/genética , Modelos Neurológicos , Proteína Quinasa C/química , Proteína Quinasa C/genética , Estructura Terciaria de Proteína , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo
3.
Nat Neurosci ; 3(9): 881-6, 2000 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-10966618

RESUMEN

Synaptic plasticity is thought to be a key process for learning, memory and other cognitive functions of the nervous system. The initial events of plasticity require the conversion of brief electrical signals into alterations of the biochemical properties of synapses that last for much longer than the initial stimuli. Here we show that a regulator of synaptic plasticity, calcium/calmodulin-dependent protein kinase IIalpha (CaMKII), sequentially translocates to postsynaptic sites, undergoes autophosphorylation and gets trapped for several minutes until its dissociation is induced by secondary autophosphorylation and phosphatase 1 action. Once dissociated, CaMKII shows facilitated translocation for several minutes. This suggests that trapping of CaMKII by its targets and priming of CaMKII translocation may function as biochemical memory mechanisms that change the signaling capacity of synapses.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Memoria/fisiología , Plasticidad Neuronal/fisiología , Membranas Sinápticas/metabolismo , Compuestos de Anilina , Animales , Animales Recién Nacidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/efectos de los fármacos , Células Cultivadas , Estimulación Eléctrica , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Ácido Glutámico/farmacología , Proteínas Fluorescentes Verdes , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/ultraestructura , Indicadores y Reactivos/metabolismo , Proteínas Luminiscentes/genética , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/ultraestructura , Fosforilación , Membranas Sinápticas/efectos de los fármacos , Membranas Sinápticas/ultraestructura , Xantenos
4.
Curr Biol ; 10(2): 86-94, 2000 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-10662666

RESUMEN

BACKGROUND: Many targets of calcium signaling pathways are activated or inhibited by binding the Ca(2+)-liganded form of calmodulin (Ca(2+)-CaM). Here, we test the hypothesis that local Ca(2+)-CaM-regulated signaling processes can be selectively activated by local intracellular differences in free Ca(2+)-CaM concentration. RESULTS: Energy-transfer confocal microscopy of a fluorescent biosensor was used to measure the difference in the concentration of free Ca(2+)-CaM between nucleus and cytoplasm. Strikingly, short receptor-induced calcium spikes produced transient increases in free Ca(2+)-CaM concentration that were of markedly higher amplitude in the cytosol than in the nucleus. In contrast, prolonged increases in calcium led to equalization of the nuclear and cytosolic free Ca(2+)-CaM concentrations over a period of minutes. Photobleaching recovery and translocation measurements with fluorescently labeled CaM showed that equalization is likely to be the result of a diffusion-mediated net translocation of CaM into the nucleus. The driving force for equalization is a higher Ca(2+)-CaM-buffering capacity in the nucleus compared with the cytosol, as the direction of the free Ca(2+)-CaM concentration gradient and of CaM translocation could be reversed by expressing a Ca(2+)-CaM-binding protein at high concentration in the cytosol. CONCLUSIONS: Subcellular differences in the distribution of Ca(2+)-CaM-binding proteins can produce gradients of free Ca(2+)-CaM concentration that result in a net translocation of CaM. This provides a mechanism for dynamically regulating local free Ca(2+)-CaM concentrations, and thus the local activity of Ca(2+)-CaM targets. Free Ca(2+)-CaM signals in the nucleus remain low during brief or low-frequency calcium spikes, whereas high-frequency spikes or persistent increases in calcium cause translocation of CaM from the cytoplasm to the nucleus, resulting in similar concentrations of nuclear and cytosolic free Ca(2+)-CaM.


Asunto(s)
Calcio/metabolismo , Calmodulina/metabolismo , Núcleo Celular/metabolismo , Citosol/metabolismo , Transducción de Señal , Animales , Cinética , Ratas , Receptores Purinérgicos P2/metabolismo , Células Tumorales Cultivadas
5.
J Neurosci Methods ; 93(1): 37-48, 1999 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-10598863

RESUMEN

The application of molecular techniques to cultured central nervous system (CNS) neurons has been limited by a lack of simple and efficient methods to introduce macromolecules into their cytosol. We have developed an electroporation technique that efficiently transfers RNA, DNA and other large membrane-impermeant molecules into adherent hippocampal neurons. Microporation allowed the use of either in vitro transcribed RNA or cDNA to transfect neurons. While RNA transfection yielded a higher percentage of transfected neurons and produced quantitative co-expression of two proteins, DNA transfection yielded higher levels of protein expression. Dextran-based calcium indicators also were efficiently delivered into the cytosol. Microporated neurons appear to survive poration quite well, as indicated by their morphological integrity, electrical excitability, ability to produce action potential-evoked calcium signals, and intact synaptic transmission. Furthermore, green fluorescent protein (GFP)-tagged marker proteins were expressed and correctly localized to the cytosol, plasma membrane, or endoplasmic reticulum. The microporation method is efficient, convenient, and inexpensive: macromolecules can be introduced into most adherent neurons in a 3 mm2 surface area while requiring as little as 1 microl of the material to be introduced. We conclude that the microporation of macromolecules is a versatile approach to investigate signaling, secretion, and other processes in CNS neurons.


Asunto(s)
ADN Complementario/genética , Electroporación/métodos , Hipocampo/fisiología , Neuronas/fisiología , ARN/genética , Transfección/métodos , Animales , Animales Recién Nacidos , Células Cultivadas , Electroporación/instrumentación , Ratas , Ratas Sprague-Dawley , Transfección/instrumentación
6.
Neuron ; 21(3): 593-606, 1998 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-9768845

RESUMEN

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase that regulates long-term potentiation and other forms of neuronal plasticity. Functional differences between the neuronal CaMKIIalpha and CaMKIIbeta isoforms are not yet known. Here, we use green fluorescent protein-tagged (GFP-tagged) CaMKII isoforms and show that CaMKIIbeta is bound to F-actin in dendritic spines and cell cortex while CaMKIIalpha is largely a cytosolic enzyme. When expressed together, the two isoforms form large heterooligomers, and a small fraction of CaMKIIbeta is sufficient to dock the predominant CaMKIIalpha to the actin cytoskeleton. Thus, CaMKIIbeta functions as a targeting module that localizes a much larger number of CaMKIIalpha isozymes to synaptic and cytoskeletal sites of action.


Asunto(s)
Actinas/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/química , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Dendritas/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Células 3T3 , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Clonación Molecular , Citoesqueleto/metabolismo , Proteínas Fluorescentes Verdes , Isoenzimas/análisis , Isoenzimas/metabolismo , Proteínas Luminiscentes/metabolismo , Sustancias Macromoleculares , Ratones , Fibras Nerviosas/metabolismo , Fibras Nerviosas/ultraestructura , Neuronas/citología , Fosforilación , Biosíntesis de Proteínas , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Sinapsis/ultraestructura , Transcripción Genética , Células Tumorales Cultivadas
7.
J Cell Biol ; 140(3): 485-98, 1998 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-9456311

RESUMEN

Cysteine-rich domains (Cys-domains) are approximately 50-amino acid-long protein domains that complex two zinc ions and include a consensus sequence with six cysteine and two histidine residues. In vitro studies have shown that Cys-domains from several protein kinase C (PKC) isoforms and a number of other signaling proteins bind lipid membranes in the presence of diacylglycerol or phorbol ester. Here we examine the second messenger functions of diacylglycerol in living cells by monitoring the membrane translocation of the green fluorescent protein (GFP)-tagged first Cys-domain of PKC-gamma (Cys1-GFP). Strikingly, stimulation of G-protein or tyrosine kinase-coupled receptors induced a transient translocation of cytosolic Cys1-GFP to the plasma membrane. The plasma membrane translocation was mimicked by addition of the diacylglycerol analogue DiC8 or the phorbol ester, phorbol myristate acetate (PMA). Photobleaching recovery studies showed that PMA nearly immobilized Cys1-GFP in the membrane, whereas DiC8 left Cys1-GFP diffusible within the membrane. Addition of a smaller and more hydrophilic phorbol ester, phorbol dibuterate (PDBu), localized Cys1-GFP preferentially to the plasma and nuclear membranes. This selective membrane localization was lost in the presence of arachidonic acid. GFP-tagged Cys1Cys2-domains and full-length PKC-gamma also translocated from the cytosol to the plasma membrane in response to receptor or PMA stimuli, whereas significant plasma membrane translocation of Cys2-GFP was only observed in response to PMA addition. These studies introduce GFP-tagged Cys-domains as fluorescent diacylglycerol indicators and show that in living cells the individual Cys-domains can trigger a diacylglycerol or phorbol ester-mediated translocation of proteins to selective lipid membranes.


Asunto(s)
Membrana Celular/metabolismo , Diglicéridos/metabolismo , Isoenzimas/metabolismo , Proteínas Luminiscentes/metabolismo , Membrana Nuclear/metabolismo , Proteína Quinasa C/metabolismo , Receptores de Superficie Celular , Receptores Acoplados a Proteínas G , Animales , Ácido Araquidónico/farmacología , Membrana Celular/enzimología , Clonación Molecular , Citosol/enzimología , Citosol/metabolismo , Difusión , Diglicéridos/farmacología , Proteínas Fluorescentes Verdes , Isoenzimas/química , Membrana Nuclear/enzimología , Factor de Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteína Quinasa C/química , Ratas , Receptores de IgE/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Sistemas de Mensajero Secundario , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología , Transfección , Células Tumorales Cultivadas
8.
Biophys J ; 73(4): 1785-96, 1997 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-9336174

RESUMEN

Electroporation is a widely used method for introducing macromolecules into cells. We developed an electroporation device that requires only 1 microl of sample to load adherent cells in a 10-mm2 surface area while retaining greater than 90% cell survivability. To better understand this device, field-induced permeabilization of adherent rat basophilic leukemia and neocortical neuroblastoma cells was investigated by using fluorescent calcium and voltage indicators. Rectangular field pulses led to the formation of only a few calcium entry sites, preferentially in the hyperpolarized parts of the cell body and processes. Individual entry sites were formed at the same locations when field pulses were repeated. Before calcium entry, a partial breakdown of the membrane potential was observed in both polar regions. Based on our results, a model is proposed for the formation and closure of macromolecule entry sites in adherent cells. First, the rapid formation of a large number of small pores leads to a partial membrane potential breakdown in both polar regions of the cell. Second, over tens of milliseconds, a few entry sites for macromolecules are formed, preferentially in the hyperpolarized part of cell body and processes, at locations defined by the local membrane structure. These entry sites reseal on a time scale of 50 ms to several seconds, with residual small pores remaining open for several minutes.


Asunto(s)
Calcio/metabolismo , Adhesión Celular/fisiología , Electroporación/métodos , Animales , Sitios de Unión , Fenómenos Biofísicos , Biofisica , Permeabilidad de la Membrana Celular , Polaridad Celular , Electroporación/instrumentación , Colorantes Fluorescentes , Homeostasis , Transporte Iónico , Cinética , Potenciales de la Membrana , Modelos Biológicos , Ratas , Fracciones Subcelulares/metabolismo , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...