Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 335
Filtrar
1.
J Am Heart Assoc ; 13(9): e032172, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38700022

RESUMEN

BACKGROUND: The purpose of this study was to investigate a therapeutic approach targeting the inflammatory response and consequent remodeling from ischemic myocardial injury. METHODS AND RESULTS: Coronary thrombus aspirates were collected from patients at the time of ST-segment-elevation myocardial infarction and subjected to array-based proteome analysis. Clinically indistinguishable at myocardial infarction (MI), patients were stratified into vulnerable and resilient on the basis of 1-year left ventricular ejection fraction and death. Network analysis from coronary aspirates revealed prioritization of tumor necrosis factor-α signaling in patients with worse clinical outcomes. Infliximab, a tumor necrosis factor-α inhibitor, was infused intravenously at reperfusion in a porcine MI model to assess whether infliximab-mediated immune modulation impacts post-MI injury. At 3 days after MI (n=7), infliximab infusion increased proregenerative M2 macrophages in the myocardial border zone as quantified by immunofluorescence (24.1%±23.3% in infliximab versus 9.29%±8.7% in sham; P<0.01). Concomitantly, immunoassays of coronary sinus samples quantified lower troponin I levels (41.72±7.34 pg/mL versus 58.11±10.75 pg/mL; P<0.05) and secreted protein analysis revealed upregulation of injury-modifying interleukin-2, -4, -10, -12, and -18 cytokines in the infliximab-treated cohort. At 4 weeks (n=12), infliximab treatment resulted in significant protective influence, improving left ventricular ejection fraction (53.9%±5.4% versus 36.2%±5.3%; P<0.001) and reducing scar size (8.31%±10.9% versus 17.41%±12.5%; P<0.05). CONCLUSIONS: Profiling of coronary thrombus aspirates in patients with ST-segment-elevation MI revealed highest association for tumor necrosis factor-α in injury risk. Infliximab-mediated immune modulation offers an actionable pathway to alter MI-induced inflammatory response, preserving contractility and limiting adverse structural remodeling.


Asunto(s)
Modelos Animales de Enfermedad , Infliximab , Remodelación Ventricular , Infliximab/uso terapéutico , Infliximab/farmacología , Animales , Humanos , Masculino , Persona de Mediana Edad , Remodelación Ventricular/efectos de los fármacos , Femenino , Infarto del Miocardio con Elevación del ST/tratamiento farmacológico , Infarto del Miocardio con Elevación del ST/inmunología , Función Ventricular Izquierda/efectos de los fármacos , Porcinos , Anciano , Factor de Necrosis Tumoral alfa/metabolismo , Volumen Sistólico/efectos de los fármacos , Trombosis Coronaria/prevención & control , Trombosis Coronaria/tratamiento farmacológico , Miocardio/patología , Miocardio/metabolismo , Miocardio/inmunología , Troponina I/sangre , Troponina I/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo
2.
Stem Cells Transl Med ; 13(2): 116-124, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38006196

RESUMEN

Patients with heart failure experience limitations in daily activity and poor quality-of-life. Prospective surveillance of health-related quality-of-life supplemented traditional death and hospitalization outcomes in the multinational, randomized, double-blinded CHART-1 clinical trial that assessed cardiopoiesis-guided cell therapy in ischemic heart failure patients with reduced left ventricular ejection fraction. The Minnesota Living with Heart Failure Questionnaire (MLHFQ), a Food and Drug Administration qualified instrument for evaluating therapeutic effectiveness, was applied through the 1-year follow-up. Cell treated (n = 109) and sham procedure (n = 140) cohorts reported improved MLHFQ scores comparable between the 2 study arms (mean treatment difference with baseline adjustment -3.2 points, P = .107). Superiority of cell treatment over sham in betterment of the MLHFQ score was demonstrated in patients with pre-existing advanced left ventricular enlargement (baseline-adjusted mean treatment difference -6.4 points, P = .009). In this highly responsive subpopulation, benefit on the MLHFQ score paralleled reduction in death and hospitalization post-cell therapy (adjusted Mann-Whitney odds 1.43, 95% CI, 1.01-2.01; P = .039). The potential of cell therapy in addressing the quality-of-life dimension of heart failure requires further evaluation for disease relief.


Asunto(s)
Insuficiencia Cardíaca , Función Ventricular Izquierda , Humanos , Volumen Sistólico , Estudios Prospectivos , Insuficiencia Cardíaca/terapia , Calidad de Vida
3.
J Biomed Mater Res A ; 112(5): 672-684, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-37971074

RESUMEN

Polycaprolactone fumarate (PCLF) is a cross-linkable PCL derivative extensively considered for tissue engineering applications. Although injection molding has been widely used to develop PCLF scaffolds, platforms developed using such technique lack precise control on architecture, design, and porosity required to ensure adequate cellular and tissue responses. In particular, the scaffolds should provide a suitable surface for cell attachment and proliferation, and facilitate cell-cell communication and nutrient flow. 3D printing technologies have led to new architype for biomaterial development with micro-architecture mimicking native tissue. Here, we developed a method for 3D printing of PCLF structures using the extrusion printing technique. The crosslinking property of PCLF enabled the unique post-processing of 3D printed scaffolds resulting in highly porous and flexible PCLF scaffolds with compressive properties imitating natural features of cancellous bone. Generated scaffolds supported excellent attachment and proliferation of mesenchymal stem cells (MSC). The high porosity of PCLF scaffolds facilitated vascularized membrane formation demonstrable with the stringency of the ex ovo chicken chorioallantoic membrane (CAM) implantation. Furthermore, upon implantation to rat calvarium defects, PCLF scaffolds enabled an exceptional new bone formation with a bone mineral density of newly formed bone mirroring native bone tissue. These studies suggest that the 3D-printed highly porous PCLF scaffolds may serve as a suitable biomaterial platform to significantly expand the utility of the PCLF biomaterial for bone tissue engineering applications.


Asunto(s)
Fumaratos , Andamios del Tejido , Ratas , Animales , Andamios del Tejido/química , Fumaratos/farmacología , Fumaratos/química , Materiales Biocompatibles/química , Poliésteres/farmacología , Poliésteres/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Porosidad , Impresión Tridimensional
6.
Small ; 19(49): e2303317, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37612820

RESUMEN

Patients with viral myocarditis are at risk of sudden death and may progress to dilated cardiomyopathy (DCM). Currently, no disease-specific therapies exist to treat viral myocarditis. Here it is examined whether reconstituted, lyophilized extracellular vesicles (EVs) from platelets from healthy men and women reduce acute or chronic myocarditis in male mice. Human-platelet-derived EVs (PEV) do not cause toxicity, damage, or inflammation in naïve mice. PEV administered during the innate immune response significantly reduces myocarditis with fewer epidermal growth factor (EGF)-like module-containing mucin-like hormone receptor-like 1 (F4/80) macrophages, T cells (cluster of differentiation molecules 4 and 8, CD4 and CD8), and mast cells, and improved cardiac function. Innate immune mediators known to increase myocarditis are decreased by innate PEV treatment including Toll-like receptor (TLR)4 and complement. PEV also significantly reduces perivascular fibrosis and remodeling including interleukin 1 beta (IL-1ß), transforming growth factor-beta 1, matrix metalloproteinase, collagen genes, and mast cell degranulation. PEV given at days 7-9 after infection reduces myocarditis and improves cardiac function. MicroRNA (miR) sequencing reveals that PEV contains miRs that decrease viral replication, TLR4 signaling, and T-cell activation. These data show that EVs from the platelets of healthy individuals can significantly reduce myocarditis and improve cardiac function.


Asunto(s)
Cardiomiopatía Dilatada , Miocarditis , Humanos , Ratones , Masculino , Femenino , Animales , Miocardio/metabolismo , Cardiomiopatía Dilatada/metabolismo , Inmunidad Innata , Macrófagos/metabolismo
7.
Bioact Mater ; 27: 216-230, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37122896

RESUMEN

Three-dimensional (3D) printing technology is driving forward the progresses of various engineering fields, including tissue engineering. However, the pristine 3D-printed scaffolds usually lack robust functions in stimulating desired activity for varied regeneration applications. In this study, we combined the two-dimensional (2D) hetero-nanostructures and immuno-regulative interleukin-4 (IL-4) cytokines for the functionalization of 3D-printed scaffolds to achieve a pro-healing immuno-microenvironment for optimized bone injury repair. The 2D hetero-nanostructure consists of graphene oxide (GO) layers, for improved cell adhesion, and black phosphorous (BP) nanosheets, for the continuous release of phosphate ions to stimulate cell growth and osteogenesis. In addition, the 2D hetero-nanolayers facilitated the adsorption of large content of immuno-regulative IL-4 cytokines, which modulated the polarization of macrophages into M2 phenotype. After in vivo implantation in rat, the immuno-functioned 3D-scaffolds achieved in vivo osteo-immunomodulation by building a pro-healing immunological microenvironment for better angiogenesis and osteogenesis in the defect area and thus facilitated bone regeneration. These results demonstrated that the immuno-functionalization of 3D-scaffolds with 2D hetero-nanostructures with secondary loading of immuno-regulative cytokines is an encouraging strategy for improving bone regeneration.

8.
Biochem Biophys Res Commun ; 623: 44-50, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-35870261

RESUMEN

Aging is associated with increased prevalence of life-threatening ventricular arrhythmias, but mechanisms underlying higher susceptibility to arrhythmogenesis and means to prevent such arrhythmias under stress are not fully defined. We aimed to define differences in aging-associated susceptibility to ventricular fibrillation (VF) induction between young and aged hearts. VF induction was attempted in isolated perfused hearts of young (6-month) and aged (24-month-old) male Fischer-344 rats by rapid pacing before and following isoproterenol (1 µM) or global ischemia and reperfusion (I/R) injury with or without pretreatment with low-dose tetrodotoxin, a late sodium current blocker. At baseline, VF could not be induced; however, the susceptibility to inducible VF after isoproterenol and spontaneous VF following I/R was 6-fold and 3-fold higher, respectively, in old hearts (P < 0.05). Old animals had longer epicardial monophasic action potential at 90% repolarization (APD90; P < 0.05) and displayed a loss of isoproterenol-induced shortening of APD90 present in the young. In isolated ventricular cardiomyocytes from older but not younger animals, 4-aminopyridine prolonged APD and induced early afterdepolarizations (EADs) and triggered activity with isoproterenol. Low-dose tetrodotoxin (0.5 µM) significantly shortened APD without altering action potential upstroke and prevented 4-aminopyridine-mediated APD prolongation, EADs, and triggered activity. Tetrodotoxin pretreatment prevented VF induction by pacing in isoproterenol-challenged hearts. Vulnerability to VF following I/R or catecholamine challenge is significantly increased in old hearts that display reduced repolarization reserve and increased propensity to EADs, triggered activity, and ventricular arrhythmogenesis that can be suppressed by low-dose tetrodotoxin, suggesting a role of slow sodium current in promoting arrhythmogenesis with aging.


Asunto(s)
Arritmias Cardíacas , Fibrilación Ventricular , 4-Aminopiridina/efectos adversos , Potenciales de Acción/fisiología , Envejecimiento/fisiología , Animales , Isoproterenol/efectos adversos , Masculino , Miocitos Cardíacos , Ratas , Sodio , Tetrodotoxina/farmacología , Fibrilación Ventricular/tratamiento farmacológico , Fibrilación Ventricular/etiología , Fibrilación Ventricular/prevención & control
9.
Front Oncol ; 12: 892195, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35712500

RESUMEN

Changes in dynamics of ATP γ- and ß-phosphoryl turnover and metabolic flux through phosphotransfer pathways in cancer cells are still unknown. Using 18O phosphometabolite tagging technology, we have discovered phosphotransfer dynamics in three breast cancer cell lines: MCF7 (non-aggressive), MDA-MB-231 (aggressive), and MCF10A (control). Contrary to high intracellular ATP levels, the 18O labeling method revealed a decreased γ- and ß-ATP turnover in both breast cancer cells, compared to control. Lower ß-ATP[18O] turnover indicates decreased adenylate kinase (AK) flux. Aggressive cancer cells had also reduced fluxes through hexokinase (HK) G-6-P[18O], creatine kinase (CK) [CrP[18O], and mitochondrial G-3-P[18O] substrate shuttle. Decreased CK metabolic flux was linked to the downregulation of mitochondrial MTCK1A in breast cancer cells. Despite the decreased overall phosphoryl flux, overexpression of HK2, AK2, and AK6 isoforms within cell compartments could promote aggressive breast cancer growth.

10.
Metabol Open ; 13: 100167, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35528374

RESUMEN

Objective: Cell metabolism has been shown to play an active role in regulation of stemness and fate decision. In order to identify favorable culture conditions for mesenchymal stromal cells (MSCs) prior to transplantation, this study aimed to characterize the metabolic function of MSCs from different developmental stages in response to different oxygen tension during expansion. Materials and methods: We cultured human fetal cardiac MSCs and human adult bone-marrow MSCs for a week under hypoxia (3% O2) and normoxia (20% O2). We performed mitochondrial characterization and assessed oxygen consumption- and extracellular acidification-rates (OCR and ECAR) in addition to oxygen-sensitive respiration and mitochondrial complex activities, using both the Seahorse and Oroboros systems. Results: Adult and fetal MSCs displayed similar basal respiration and mitochondrial amount, however fetal MSCs had lower spare respiratory capacity and apparent coupling efficiency. Fetal MSCs expanded in either hypoxia or normoxia demonstrated similar acidification rates, while adult MSCs downregulated their aerobic glycolysis in normoxia. Acute decrease in oxygen tension caused a higher respiratory inhibition in adult compared to fetal MSCs. In both sources of MSCs, minor changes in complex activities in normoxic and hypoxic cultures were found. Conclusions: In contrast to adult MSCs, fetal MSCs displayed similar respiration and aerobic glycolysis at different O2 culture concentrations during expansion. Adult MSCs adjusted their respiration to glycolytic activities, depending on the culture conditions thus displaying a more mature metabolic function. These findings are relevant for establishing optimal in vitro culturing conditions, with the aim to maximize engraftment and therapeutic outcome.

11.
Sci Rep ; 12(1): 7314, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35513538

RESUMEN

Plasmalemmal ATP sensitive potassium (KATP) channels are recognized metabolic sensors, yet their cellular reach is less well understood. Here, transgenic Kir6.2 null hearts devoid of the KATP channel pore underwent multiomics surveillance and systems interrogation versus wildtype counterparts. Despite maintained organ performance, the knockout proteome deviated beyond a discrete loss of constitutive KATP channel subunits. Multidimensional nano-flow liquid chromatography tandem mass spectrometry resolved 111 differentially expressed proteins and their expanded network neighborhood, dominated by metabolic process engagement. Independent multimodal chemometric gas and liquid chromatography mass spectrometry unveiled differential expression of over one quarter of measured metabolites discriminating the Kir6.2 deficient heart metabolome. Supervised class analogy ranking and unsupervised enrichment analysis prioritized nicotinamide adenine dinucleotide (NAD+), affirmed by extensive overrepresentation of NAD+ associated circuitry. The remodeled metabolome and proteome revealed functional convergence and an integrated signature of disease susceptibility. Deciphered cardiac patterns were traceable in the corresponding plasma metabolome, with tissue concordant plasma changes offering surrogate metabolite markers of myocardial latent vulnerability. Thus, Kir6.2 deficit precipitates multiome reorganization, mapping a comprehensive atlas of the KATP channel dependent landscape.


Asunto(s)
NAD , Proteoma , Adenosina Trifosfato , Corazón , Canales KATP/genética , Canales KATP/metabolismo , NAD/metabolismo , Proteoma/metabolismo
12.
J Biomed Mater Res A ; 110(8): 1488-1498, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35319809

RESUMEN

A promising new strategy emerged in bone tissue engineering is to incorporate black phosphorus (BP) into polymer scaffolds, fabricating nanocomposite hydrogel platforms with biocompatibility, degradation controllability, and osteogenic capacity. BP quantum dot is a new concept and stands out recently among the BP family due to its tiny structure and a series of excellent characteristics. In this study, BP was processed into nanosheets of three different sizes via different exfoliation strategies and then incorporated into cross-linkable oligo[poly(ethylene glycol) fumarate] (OPF) to produce nanocomposite hydrogels for bone regeneration. The three different BP nanosheets were designated as BP-L, BP-M, and BP-S, with a corresponding diameter of 242.3 ± 90.0, 107.1 ± 47.9, and 18.8 ± 4.6 nm. The degradation kinetics and osteogenic capacity of MC3T3 pre-osteoblasts in vitro were both dependent on the BP size. BP exhibited a controllable degradation rate, which increased with the decrease of the size of the nanosheets, coupled with the release of phosphate in vitro. The osteogenic capacity of the hydrogels was promoted with the addition of all BP nanosheets, compared with OPF hydrogel alone. The smallest BP quantum dots was shown to be optimal in enhancing MC3T3 cell behaviors, including spreading, distribution, proliferation, and differentiation on the OPF hydrogels. These results reinforced that the supplementation of BP quantum dots into OPF nanocomposite hydrogel scaffolds could potentially find application in the restoration of bone defects.


Asunto(s)
Osteogénesis , Fósforo , Hidrogeles/química , Hidrogeles/farmacología , Nanogeles , Polietilenglicoles/química , Ingeniería de Tejidos
13.
ACS Nano ; 16(2): 2741-2755, 2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35072461

RESUMEN

Scaffold-free spheroids offer great potential as a direct supply of cells for bottom-up bone tissue engineering. However, the building of functional spheroids with both cells and bioactive signals remains challenging. Here, we engineered functional spheroids with mesenchymal stem cells (MSCs) and two-dimensional heteronano-layers (2DHNL) that consisted of black phosphorus (BP) and graphene oxide (GO) to create a 3D cell-instructive microenvironment for large defect bone repair. The effects of the engineered 2D materials on the proliferation, osteogenic differentiation of stem cells was evaluated in an in vitro 3D spheroidal microenvironment. Excellent in vivo support of osteogenesis of MSCs, neovascularization, and bone regeneration was achieved after transplanting these engineered spheroids into critical-sized rat calvarial defects. Further loading of osteogenic factor dexamethasone (DEX) on the 2DHNL showed outstanding in vivo osteogenic induction and bone regrowth without prior in vitro culture in osteogenic medium. The shortened overall culture time would be advantageous for clinical translation. These functional spheroids impregnated with engineered 2DHNL enabling stem cell and osteogenic factor codelivery could be promising functional building blocks to provide cells and differential clues in an all-in-one system to create large tissues for time-effective in vivo bone repair.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Animales , Diferenciación Celular , Ratas , Células Madre , Ingeniería de Tejidos/métodos , Andamios del Tejido
14.
Int J Mol Sci ; 22(21)2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34768825

RESUMEN

Heart failure pathobiology is permissive to reparative intent. Regenerative therapies exemplify an emerging disruptive innovation aimed at achieving structural and functional organ restitution. However, mixed outcomes, complexity in use, and unsustainable cost have curtailed broader adoption, mandating the development of novel cardio-regenerative approaches. Lineage guidance offers a standardized path to customize stem cell fitness for therapy. A case in point is the molecular induction of the cardiopoiesis program in adult stem cells to yield cardiopoietic cell derivatives designed for heart failure treatment. Tested in early and advanced clinical trials in patients with ischemic heart failure, clinical grade cardiopoietic cells were safe and revealed therapeutic improvement within a window of treatment intensity and pre-treatment disease severity. With the prospect of mass customization, cardiopoietic guidance has been streamlined from the demanding, recombinant protein cocktail-based to a protein-free, messenger RNA-based single gene protocol to engineer affordable cardiac repair competent cells. Clinical trial biobanked stem cells enabled a systems biology deconvolution of the cardiopoietic cell secretome linked to therapeutic benefit, exposing a paracrine mode of action. Collectively, this new knowledge informs next generation regenerative therapeutics manufactured as engineered cellular or secretome mimicking cell-free platforms. Launching biotherapeutics tailored for optimal outcome and offered at mass production cost would contribute to advancing equitable regenerative care that addresses population health needs.


Asunto(s)
Insuficiencia Cardíaca/rehabilitación , Insuficiencia Cardíaca/terapia , Medicina Regenerativa/métodos , Células Madre Adultas/citología , Humanos , Trasplante de Células Madre Mesenquimatosas/métodos , Infarto del Miocardio/terapia , Células Madre/citología
15.
Bone Jt Open ; 2(11): 926-931, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34751583

RESUMEN

AIMS: Bone marrow-derived mesenchymal stem cells obtained from bone marrow aspirate concentrate (BMAC) with platelet-rich plasma (PRP), has been used as an adjuvant to hip decompression. Early results have shown promise for hip preservation in patients with osteonecrosis (ON) of the femoral head. The purpose of the current study is to examine the mid-term outcome of this treatment in patients with precollapse corticosteroid-induced ON of the femoral head. METHODS: In all, 22 patients (35 hips; 11 males and 11 females) with precollapse corticosteroid-induced ON of the femoral head underwent hip decompression combined with BMAC and PRP. Mean age and BMI were 43 years (SD 12) and 31 kg/m² (SD 6), respectively, at the time of surgery. Survivorship free from femoral head collapse and total hip arthroplasty (THA) and risk factors for progression were evaluated at minimum five-years of clinical follow-up with a mean follow-up of seven years (5 to 8). RESULTS: Survivorship free from femoral head collapse and THA for any reason was 84% and 67% at seven years postoperatively, respectively. Risk factors for conversion to THA included a high preoperative modified Kerboul angle (grade 3 or 4) based on preoperative MRI (hazard ratio (HR) 3.96; p = 0.047) and corticosteroid use at the time of decompression (HR 4.15; p = 0.039). The seven-year survivorship for patients with grade 1 or 2 Kerboul angles for conversion to THA for articular collapse, and THA for any reason, were 96% and 72%, respectively, versus THA for articular collapse and THA for any reason in patients with grade 3 or 4 Kerboul angles of 40% (p = 0.003) and 40% (p = 0.032). CONCLUSION: At seven years, hip decompression augmented with BMAC and PRP provided a 67% survivorship free from THA in patients with corticosteroid-induced ON. Ideal candidates for this procedure are patients with low preoperative Kerboul angles and can stop corticosteroid treatment prior to decompression. Cite this article: Bone Jt Open 2021;2(11):926-931.

16.
NPJ Regen Med ; 6(1): 57, 2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34556664

RESUMEN

Life expectancy has increased by three decades since the mid-twentieth century. Parallel healthspan expansion has however not followed, largely impeded by the pandemic of chronic diseases afflicting a growing older population. The lag in quality of life is a recognized challenge that calls for prioritization of disease-free longevity. Contemporary communal, clinical and research trends aspiring to extend the health horizon are here outlined in the context of an evolving epidemiology. A shared action integrating public and societal endeavors with emerging interventions that target age-related multimorbidity and frailty is needed. A multidimensional buildout of a curative perspective, boosted by modern anti-senescent and regenerative technology with augmented decision making, would require dedicated resources and cost-effective validation to responsibly bridge the healthspan-lifespan gap for a future of equitable global wellbeing.

17.
Stem Cells Int ; 2021: 1938819, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34434236

RESUMEN

In situ cell recruitment is a promising regenerative medicine strategy with the purpose of tissue regeneration without stem cell transplantation. This chemotaxis-based strategy is aimed at ensuring a restorative environment through the release of chemokines that promote site-specific migration of healing cell populations. Stromal cell-derived factor-1α (SDF-1α) is a critical chemokine that can regulate the migration of mesenchymal stem cells (MSCs). Accordingly, here, SDF-1α-loaded microporous oligo[poly(ethylene glycol) fumarate]/bis[2-(methacryloyloxy)ethyl] phosphate composites (SDF-1α/OPF/BP) were engineered and probed. SDF-1α/OPF/BP composites were loaded with escalating SDF-1α concentrations, namely, 0 ng/ml, 50 ng/ml, 100 ng/ml, and 200 ng/ml, and were cocultured with MSC. Scratching assay, Transwell assay, and three-dimensional migration model were utilized to assess the migration response of MSCs. Immunofluorescence staining of Runx2 and osteopontin (OPN), ELISA assay of osteocalcin (OCN) and alkaline phosphatase (ALP), and Alizarin Red S staining were conducted to assess the osteogenesis of MSCs. All SDF-1α/OPF/BP composites engendered a release of SDF-1α (>80%) during the first four days. SDF-1α released from the composites significantly promoted migration and osteogenic differentiation of MSCs documented by upregulated expression of osteogenic-related proteins, ALP, Runx2, OCN, and OPN. SDF-1α at 100 ng/ml was optimal for enhanced migration and osteogenic proficiency. Thus, designed SDF-1α/OPF/BP composites were competent in promoting the homing and osteogenesis of MSCs and thus offer a promising bioactive scaffold candidate for on-demand bone tissue regeneration.

19.
Biomaterials ; 276: 121014, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34280821

RESUMEN

Injectable polymers have attracted intensive attention in tissue engineering and drug delivery applications. Current injectable polymer systems often require free-radical or heavy-metal initiators and catalysts for the crosslinking process, which may be extremely toxic to the human body. Here, we report a novel polyhedral oligomeric silsesquioxane (POSS) based strain-promoted alkyne-azide cycloaddition (SPAAC) "click" organic-inorganic nanohybrids (click-ON) system that can be click-crosslinked without any toxic initiators or catalysts. The click-ON scaffolds supported excellent adhesion, proliferation, and osteogenesis of stem cells. In vivo evaluation using a rat cranial defect model showed outstanding bone formation with minimum cytotoxicity. Essential osteogenic alkaline phosphatase (ALP) and vascular CD31 marker expression were detected on the defect site, indicating excellent support of in vivo osteogenesis and vascularization. Using salt leaching techniques, an injectable porous click-ON cement was developed to create porous structures and support better in vivo bone regeneration. Beyond defect filling, the click-ON cement also showed promising application for spinal fusion using rabbits as a model. Compared to the current clinically used poly (methyl methacrylate) (PMMA) cement, this click-ON cement showed great advantages of low heat generation, better biocompatibility and biodegradability, and thus has great potential for bone and related tissue engineering applications.


Asunto(s)
Cementos para Huesos , Ingeniería de Tejidos , Animales , Regeneración Ósea , Hidrogeles , Osteogénesis , Conejos , Ratas , Andamios del Tejido
20.
Biomark Med ; 15(10): 775-783, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34169733

RESUMEN

Risk of outcome variability challenges therapeutic innovation. Selection of the most suitable candidates is predicated on reliable response indicators. Especially for emergent regenerative biotherapies, determinants separating success from failure in achieving disease rescue remain largely unknown. Accordingly, (pre)clinical development programs have placed increased emphasis on the multi-dimensional decoding of repair capacity and disease resolution, attributes defining responsiveness. To attain regenerative goals for each individual, phenotype-based patient selection is poised for an upgrade guided by new insights into disease biology, translated into refined surveillance of response regulators and deep learning-amplified clinical decision support.


Asunto(s)
Insuficiencia Cardíaca
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...