Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Med Phys ; 51(2): 1092-1104, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37493097

RESUMEN

BACKGROUND: Synovitis is one of the defining characteristics of osteoarthritis (OA) in the carpometacarpal (CMC1) joint of the thumb. Quantitative characterization of synovial volume is important for furthering our understanding of CMC1 OA disease progression, treatment response, and monitoring strategies. In previous studies, three-dimensional ultrasound (3-D US) has demonstrated the feasibility of being a point-of-care system for monitoring knee OA. However, 3-D US has not been tested on the smaller joints of the hand, which presents unique physiological and imaging challenges. PURPOSE: To develop and validate a novel application of 3-D US to monitor soft-tissue characteristics of OA in a CMC1 OA patient population compared to the current gold standard, magnetic resonance imaging (MRI). METHODS: A motorized submerged transducer moving assembly was designed for this device specifically for imaging the joints of the hands and wrist. The device used a linear 3-D scanning approach, where a 14L5 2-D transducer was translated over the region of interest. Two imaging phantoms were used to test the linear and volumetric measurement accuracy of the 3-D US device. To evaluate the accuracy of the reconstructed 3-D US geometry, a multilayer monofilament string-grid phantom (10 mm square grid) was scanned. To validate the volumetric measurement capabilities of the system, a simulated synovial tissue phantom with an embedded synovial effusion was fabricated and imaged. Ten CMC1 OA patients were imaged by our 3-D US and a 3.0 T MRI system to compare synovial volumes. The synovial volumes were manually segmented by two raters on the 2D slices of the 3D US reconstruction and MR images, to assess the accuracy and precision of the device for determining synovial tissue volumes. The Standard Error of Measurement and Minimal Detectable Change was used to assess the precision and sensitivity of the volume measurements. Paired sample t-tests were used to assess statistical significance. Additionally, rater reliability was assessed using Intra-Class Correlation (ICC) coefficients. RESULTS: The largest percent difference observed between the known physical volume of synovial extrusion in the phantom and the volume measured by our 3D US was 1.1% (p-value = 0.03). The mean volume difference between the 3-D US and the gold standard MRI was 1.78% (p-value = 0.48). The 3-D US synovial tissue volume measurements had a Standard Error Measurement (SEm ) of 11.21 mm3 and a Minimal Detectible Change (MDC) of 31.06 mm3 , while the MRI synovial tissue volume measurements had an SEM of 16.82 mm3 and an MDC of 46.63 mm3 . Excellent inter- and intra-rater reliability (ICCs = 0.94-0.99) observed across all imaging modalities and raters. CONCLUSION: Our results indicate the feasibility of applying 3-D US technology to provide accurate and precise CMC1 synovial tissue volume measurements, similar to MRI volume measurements. Lower MDC and SEm values for 3-D US volume measurements indicate that it is a precise measurement tool to assess synovial volume and that it is sensitive to variation between volume segmentations. The application of this imaging technique to monitor OA pathogenesis and treatment response over time at the patient's bedside should be thoroughly investigated in future studies.


Asunto(s)
Osteoartritis de la Rodilla , Sinovitis , Humanos , Estudios de Factibilidad , Reproducibilidad de los Resultados , Sinovitis/diagnóstico por imagen , Sinovitis/etiología , Sinovitis/patología , Membrana Sinovial/patología , Osteoartritis de la Rodilla/complicaciones , Osteoartritis de la Rodilla/patología , Imagen por Resonancia Magnética/métodos
2.
Phys Med Biol ; 68(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37918343

RESUMEN

Objective.Ultrasound is the most commonly used examination for the detection and identification of thyroid nodules. Since manual detection is time-consuming and subjective, attempts to introduce machine learning into this process are ongoing. However, the performance of these methods is limited by the low signal-to-noise ratio and tissue contrast of ultrasound images. To address these challenges, we extend thyroid nodule detection from image-based to video-based using the temporal context information in ultrasound videos.Approach.We propose a video-based deep learning model with adjacent frame perception (AFP) for accurate and real-time thyroid nodule detection. Compared to image-based methods, AFP can aggregate semantically similar contextual features in the video. Furthermore, considering the cost of medical image annotation for video-based models, a patch scale self-supervised model (PASS) is proposed. PASS is trained on unlabeled datasets to improve the performance of the AFP model without additional labelling costs.Main results.The PASS model is trained by 92 videos containing 23 773 frames, of which 60 annotated videos containing 16 694 frames were used to train and evaluate the AFP model. The evaluation is performed from the video, frame, nodule, and localization perspectives. In the evaluation of the localization perspective, we used the average precision metric with the intersection-over-union threshold set to 50% (AP@50), which is the area under the smoothed Precision-Recall curve. Our proposed AFP improved AP@50 from 0.256 to 0.390, while the PASS-enhanced AFP further improved the AP@50 to 0.425. AFP and PASS also improve the performance in the valuations of other perspectives based on the localization results.Significance.Our video-based model can mitigate the effects of low signal-to-noise ratio and tissue contrast in ultrasound images and enable the accurate detection of thyroid nodules in real-time. The evaluation from multiple perspectives of the ablation experiments demonstrates the effectiveness of our proposed AFP and PASS models.


Asunto(s)
Nódulo Tiroideo , Humanos , Nódulo Tiroideo/diagnóstico por imagen , alfa-Fetoproteínas , Ultrasonografía , Aprendizaje Automático , Relación Señal-Ruido
3.
Sci Rep ; 13(1): 14390, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658125

RESUMEN

Breast cancer screening has substantially reduced mortality across screening populations. However, a clinical need persists for more accessible, cost-effective, and robust approaches for increased-risk and diverse patient populations, especially those with dense breasts where screening mammography is suboptimal. We developed and validated a cost-effective, portable, patient-dedicated three-dimensional (3D) automated breast ultrasound (ABUS) system for point-of-care breast cancer screening. The 3D ABUS system contains a wearable, rapid-prototype 3D-printed dam assembly, a compression assembly, and a computer-driven 3DUS scanner, adaptable to any commercially available US machine and transducer. Acquisition is operator-agnostic, involves a 40-second scan time, and provides multiplanar 3D visualization for whole-breast assessment. Geometric reconstruction accuracy was evaluated with a 3D grid phantom and tissue-mimicking breast phantoms, demonstrating linear measurement and volumetric reconstruction errors < 0.2 mm and < 3%, respectively. The system's capability was demonstrated in a healthy male volunteer and two healthy female volunteers, representing diverse patient geometries and breast sizes. The system enables comfortable ultrasonic coupling and tissue stabilization, with adjustable compression to improve image quality while alleviating discomfort. Moreover, the system effectively mitigates breathing and motion, since its assembly affixes directly onto the patient. While future studies are still required to evaluate the impact on current clinical practices and workflow, the 3D ABUS system shows potential for adoption as an alternative, cost-effective, dedicated point-of-care breast cancer screening approach for increased-risk populations and limited-resource settings.


Asunto(s)
Neoplasias de la Mama , Detección Precoz del Cáncer , Humanos , Femenino , Masculino , Neoplasias de la Mama/diagnóstico por imagen , Análisis Costo-Beneficio , Sistemas de Atención de Punto , Mamografía
4.
Int J Comput Assist Radiol Surg ; 18(7): 1159-1166, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37162735

RESUMEN

PURPOSE: US-guided percutaneous focal liver tumor ablations have been considered promising curative treatment techniques. To address cases with invisible or poorly visible tumors, registration of 3D US with CT or MRI is a critical step. By taking advantage of deep learning techniques to efficiently detect representative features in both modalities, we aim to develop a 3D US-CT/MRI registration approach for liver tumor ablations. METHODS: Facilitated by our nnUNet-based 3D US vessel segmentation approach, we propose a coarse-to-fine 3D US-CT/MRI image registration pipeline based on the liver vessel surface and centerlines. Then, phantom, healthy volunteer and patient studies are performed to demonstrate the effectiveness of our proposed registration approach. RESULTS: Our nnUNet-based vessel segmentation model achieved a Dice score of 0.69. In healthy volunteer study, 11 out of 12 3D US-MRI image pairs were successfully registered with an overall centerline distance of 4.03±2.68 mm. Two patient cases achieved target registration errors (TRE) of 4.16 mm and 5.22 mm. CONCLUSION: We proposed a coarse-to-fine 3D US-CT/MRI registration pipeline based on nnUNet vessel segmentation models. Experiments based on healthy volunteers and patient trials demonstrated the effectiveness of our registration workflow. Our code and example data are publicly available in this r epository.


Asunto(s)
Neoplasias Hepáticas , Tomografía Computarizada por Rayos X , Humanos , Tomografía Computarizada por Rayos X/métodos , Imagen por Resonancia Magnética/métodos , Neoplasias Hepáticas/diagnóstico por imagen , Neoplasias Hepáticas/cirugía , Neoplasias Hepáticas/patología , Imagenología Tridimensional/métodos , Procesamiento de Imagen Asistido por Computador/métodos
5.
J Neurosurg Pediatr ; 31(4): 321-328, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36670532

RESUMEN

OBJECTIVE: Some neonates born prematurely with intraventricular hemorrhage develop posthemorrhagic hydrocephalus and require lifelong treatment to divert the flow of CSF. Early prediction of the eventual need for a ventriculoperitoneal shunt (VPS) is difficult, and early discussions with families are based on statistics and the grade of hemorrhage. The authors hypothesize that change in ventricular volume during ventricular taps that is measured with repeated 3D ultrasound (3D US) imaging of the lateral ventricles could be used to assess the risk of the future requirement of a VPS. METHODS: A total of 92 neonates with intraventricular hemorrhage who were treated in the NICU were recruited between April 2012 and November 2019. Only patients who required ventricular taps (VTs) were included in this study, resulting in the analysis of 19 patients with a total of 61 VTs. Among them, 14 patients were treated with a VPS, and in 5 patients the hydrocephalus resolved spontaneously. Parameters studied were total ventricular volume measured with 3D US, ventricular volume change after VT, the ratio between volume reduction and tap amount, the difference between tap amount and volume reduction after tap, the average tap amount, the average number of days between taps, pre-tap head circumference, and reduction in head circumference after tap. RESULTS: Statistically significant differences were found in ventricular volume reduction after tap (p = 0.007), the ratio between volume reduction and tap amount (p = 0.03), the difference between tap amount and volume reduction after tap (p = 0.05), and the interval of days between taps (p = 0.0115). CONCLUSIONS: Measuring with 3D US before and after VT can be a useful tool for quantifying ventricular volume. The findings in this study showed that neonates who experience a large reduction of ventricular volume after VT are more likely to be treated with a shunt than are neonates who experience a small reduction.


Asunto(s)
Hidrocefalia , Derivación Ventriculoperitoneal , Recién Nacido , Humanos , Derivación Ventriculoperitoneal/efectos adversos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/etiología , Hidrocefalia/cirugía , Hemorragia Cerebral/complicaciones , Hemorragia Cerebral/diagnóstico por imagen , Ultrasonografía , Drenaje , Estudios Retrospectivos
6.
Med Phys ; 50(3): 1259-1273, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36583505

RESUMEN

BACKGROUND: Multiparametric MRI (mpMRI) is an effective tool for detecting and staging prostate cancer (PCa), guiding interventional therapy, and monitoring PCa treatment outcomes. MRI-guided focal laser ablation (FLA) therapy is an alternative, minimally invasive treatment method to conventional therapies, which has been demonstrated to control low-grade, localized PCa while preserving patient quality of life. The therapeutic success of FLA depends on the accurate placement of needles for adequate delivery of ablative energy to the target lesion. We previously developed an MR-compatible mechatronic system for prostate FLA needle guidance and validated its performance in open-air and clinical 3T in-bore experiments using virtual targets. PURPOSE: To develop a robust MRI-to-mechatronic system registration method and evaluate its in-bore MR-guided needle delivery accuracy in tissue-mimicking prostate phantoms. METHODS: The improved registration multifiducial assembly houses thirty-six aqueous gadolinium-filled spheres distributed over a 7.3 × 7.3 × 5.2 cm volume. MRI-guided needle guidance accuracy was quantified in agar-based tissue-mimicking prostate phantoms on trajectories (N = 44) to virtual targets covering the mechatronic system's range of motion. 3T gradient-echo recalled (GRE) MRI images were acquired after needle insertions to each target, and the air-filled needle tracks were segmented. Needle guidance error was measured as the shortest Euclidean distance between the target point and the segmented needle trajectory, and angular error was measured as the angle between the targeted trajectory and the segmented needle trajectory. These measurements were made using both the previously designed four-sphere registration fiducial assembly on trajectories (N = 7) and compared with the improved multifiducial assembly using a Mann-Whitney U test. RESULTS: The median needle guidance error of the system using the improved registration fiducial assembly at a depth of 10 cm was 1.02 mm with an interquartile range (IQR) of 0.42-2.94 mm. The upper limit of the one-sided 95% prediction interval of needle guidance error was 4.13 mm. The median (IQR) angular error was 0.0097 rad (0.0057-0.015 rad) with a one-sided 95% prediction interval upper limit of 0.022 rad. The median (IQR) positioning error using the previous four-sphere registration fiducial assembly was 1.87 mm (1.77-2.14 mm). This was found to be significantly different (p = 0.0012) from the median (IQR) positioning error of 0.28 mm (0.14-0.95 mm) using the new registration fiducial assembly on the same trajectories. No significant difference was detected between the medians of the angular errors (p = 0.26). CONCLUSION: This is the first study presenting an improved registration method and validation in tissue-mimicking phantoms of our remotely actuated MR-compatible mechatronic system for delivery of prostate FLA needles. Accounting for the effects of needle deflection, the system was demonstrated to be capable of needle delivery with an error of 4.13 mm or less in 95% of cases under ideal conditions, which is a statistically significant improvement over the previous method. The system will next be validated in a clinical setting.


Asunto(s)
Terapia por Láser , Neoplasias de la Próstata , Masculino , Humanos , Próstata/patología , Calidad de Vida , Imagen por Resonancia Magnética/métodos , Agujas , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía
7.
Ultrasound Med Biol ; 49(1): 278-288, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36220709

RESUMEN

Joint arthropathies often require continuous monitoring of the joint condition, typically performed using magnetic resonance (MR) or ultrasound (US) imaging. US imaging is often the preferred screening or diagnostic tool as it is fast and inexpensive. However, conventional 2-D US has limited capability to compare imaging results between examinations because of its operator dependence and challenges related to repeat imaging in the same location and orientation. Comparison between several imaging sessions is crucial to assess the interval progression of joint conditions. We propose a novel 3-D US scanner for ankle joint assessment that can partially overcome these issues by enabling 3-D imaging. Here, we (i) present the design of the 3-D US ankle scanner system, (ii) validate the geometric reconstruction accuracy of the system, (iii) provide preliminary images of healthy volunteer ankles and (iv) compare 3-D US imaging results with MR imaging. The 3-D ankle scanner consists of a tub filled with water, a linear US probe attached to the wall of the tub and a motorized unit that rotates the US probe 360° around the center of the tub. As the probe rotates, a 3-D US image is formed of the ankle of the patient positioned in the middle of the tub. US probe height, angle and distance from the tub center can be adjusted. The reconstruction accuracy of the system was validated in each of the coordinate directions at different probe angles using two test phantoms. A phantom consisting of numerous Ø200-µm nylon threads with known spacing and a metal rod with machined grooves was used for validation in the horizontal and vertical directions, respectively. The volumetric reconstruction accuracy validation was performed by imaging an agar phantom with two embedded spheres of known volumes and comparing the segmented sphere volume and surface area with the expected. Three-dimensional US and MR images of both ankles of five healthy volunteers were acquired. Distal tibia and proximal talus were segmented in both imaging modalities and the surfaces of these segmentations were compared using the 95% Hausdorff and mean surface distances. The observed mean linear measurement error in all the coordinate directions and over several probe angles was 2.98%. The mean measured volumetric measurement error was 3.45%. The volunteer study revealed useful features for joint assessment present in the 3-D ankle scanner images, such as joint spacing, distal tibia and proximal talus. The mean 95% Hausdorff and mean surface distances between segmentations in 3-D US and MR images were 5.68 ± 0.83 and 2.01 ± 0.30 mm, respectively. In this proof-of-concept study, the 3-D US ankle scanner enabled visualization of the ankle joint features that are useful for joint assessment.


Asunto(s)
Articulación del Tobillo , Imagenología Tridimensional , Humanos , Articulación del Tobillo/diagnóstico por imagen , Ultrasonografía/métodos , Fantasmas de Imagen , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos
8.
Med Phys ; 49(6): 3944-3962, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35319105

RESUMEN

BACKGROUND: Mammographic screening has reduced mortality in women through the early detection of breast cancer. However, the sensitivity for breast cancer detection is significantly reduced in women with dense breasts, in addition to being an independent risk factor. Ultrasound (US) has been proven effective in detecting small, early-stage, and invasive cancers in women with dense breasts. PURPOSE: To develop an alternative, versatile, and cost-effective spatially tracked three-dimensional (3D) US system for whole-breast imaging. This paper describes the design, development, and validation of the spatially tracked 3DUS system, including its components for spatial tracking, multi-image registration and fusion, feasibility for whole-breast 3DUS imaging and multi-planar visualization in tissue-mimicking phantoms, and a proof-of-concept healthy volunteer study. METHODS: The spatially tracked 3DUS system contains (a) a six-axis manipulator and counterbalanced stabilizer, (b) an in-house quick-release 3DUS scanner, adaptable to any commercially available US system, and removable, allowing for handheld 3DUS acquisition and two-dimensional US imaging, and (c) custom software for 3D tracking, 3DUS reconstruction, visualization, and spatial-based multi-image registration and fusion of 3DUS images for whole-breast imaging. Spatial tracking of the 3D position and orientation of the system and its joints (J1-6 ) were evaluated in a clinically accessible workspace for bedside point-of-care (POC) imaging. Multi-image registration and fusion of acquired 3DUS images were assessed with a quadrants-based protocol in tissue-mimicking phantoms and the target registration error (TRE) was quantified. Whole-breast 3DUS imaging and multi-planar visualization were evaluated with a tissue-mimicking breast phantom. Feasibility for spatially tracked whole-breast 3DUS imaging was assessed in a proof-of-concept healthy male and female volunteer study. RESULTS: Mean tracking errors were 0.87 ± 0.52, 0.70 ± 0.46, 0.53 ± 0.48, 0.34 ± 0.32, 0.43 ± 0.28, and 0.78 ± 0.54 mm for joints J1-6 , respectively. Lookup table (LUT) corrections minimized the error in joints J1 , J2 , and J5 . Compound motions exercising all joints simultaneously resulted in a mean tracking error of 1.08 ± 0.88 mm (N = 20) within the overall workspace for bedside 3DUS imaging. Multi-image registration and fusion of two acquired 3DUS images resulted in a mean TRE of 1.28 ± 0.10 mm. Whole-breast 3DUS imaging and multi-planar visualization in axial, sagittal, and coronal views were demonstrated with the tissue-mimicking breast phantom. The feasibility of the whole-breast 3DUS approach was demonstrated in healthy male and female volunteers. In the male volunteer, the high-resolution whole-breast 3DUS acquisition protocol was optimized without the added complexities of curvature and tissue deformations. With small post-acquisition corrections for motion, whole-breast 3DUS imaging was performed on the healthy female volunteer showing relevant anatomical structures and details. CONCLUSIONS: Our spatially tracked 3DUS system shows potential utility as an alternative, accurate, and feasible whole-breast approach with the capability for bedside POC imaging. Future work is focused on reducing misregistration errors due to motion and tissue deformations, to develop a robust spatially tracked whole-breast 3DUS acquisition protocol, then exploring its clinical utility for screening high-risk women with dense breasts.


Asunto(s)
Neoplasias de la Mama , Densidad de la Mama , Neoplasias de la Mama/diagnóstico por imagen , Detección Precoz del Cáncer , Femenino , Humanos , Imagenología Tridimensional/métodos , Masculino , Mamografía , Fantasmas de Imagen , Sistemas de Atención de Punto
9.
Med Phys ; 48(9): 5283-5299, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34131933

RESUMEN

PURPOSE: Prostate cancer is the most common non-cutaneous cancer among men in the United States and is the second leading cause of cancer death in American men. (Siegel et al. [2019] CA: A Cancer J Clin.69(1):7-34.) Focal laser ablation (FLA) has the potential to control small tumors while preserving urinary and erectile function by leaving the neurovascular bundles and urethral sphincters intact. Accurate needle guidance is critical to the success of FLA. Multiparametric magnetic resonance images (mpMRI) can be used to identify targets, guide needles, and assess treatment outcomes. The purpose of this work was to design and evaluate the accuracy of an MR-compatible mechatronic system for in-bore transperineal guidance of FLA ablation needles to localized lesions in the prostate. METHODS: The mechatronic system was constructed entirely of non-ferromagnetic materials, with actuation controlled by piezoelectric motors and optical encoders. The needle guide hangs between independent front and rear two-link arms, which allows for horizontal and vertical translation as well as pitch and yaw rotation of the guide with a 6.0 cm range of motion in each direction. Needles are inserted manually through a chosen hole in the guide, which has been aligned with the target in the prostate. Open-air positioning error was evaluated using an optical tracking system (0.25 mm RMS accuracy) to measure 125 trajectories in free space. Correction of systematic bias in the system was performed using 85 of the trajectories, and the remaining 40 were used to estimate the residual error. The error was calculated as the horizontal and vertical displacement between the axis of the desired and measured trajectories at a typical needle insertion depth of 10 cm. MR-compatibility was evaluated using a grid phantom to assess image degradation due to the presence of the system, and induced force, heating, and electrical interference in the system were assessed qualitatively. In-bore positioning error was evaluated on 25 trajectories. RESULTS: Open-air mean positioning error at the needle tip was 0.80 ± 0.36 mm with a one-sided 95% confidence interval of 1.40 mm. The mean deviation of needle trajectories from the planned direction was 0.14 ± 0.06∘ . In the MR bore, the mean positioning error at the needle tip was 2.11 ± 1.05 mm with a one-sided 95% prediction interval of 3.84 mm. The mean angular error was 0.49 ± 0.26∘ . The system was found to be compatible with the MR environment under the specified gradient-echo sequence parameters used in this study. CONCLUSION: A complete system for delivering needles to localized prostate tumors was developed and described in this work, and its compatibility with the MR environment was demonstrated. In-bore MRI positioning error was sufficiently small for targeting small localized prostate tumors.


Asunto(s)
Agujas , Neoplasias de la Próstata , Humanos , Imagen por Resonancia Magnética , Masculino , Fantasmas de Imagen , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía
10.
PLoS One ; 14(9): e0221599, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31532780

RESUMEN

We investigate conditional specifications of the five-factor Fama-French (FF) model, augmented with traditional illiquidity measures. The motivation for this time-varying methodology is that the traditional static approach of the FF model may be misspecified, especially for the endogenous illiquidity measures. We focus on the time-varying nature of the Jensen performance measure α and the market systematic risk sensitivity ß, as these parameters are essentially universal in asset pricing models. To tackle endogeneity and other specification errors, we rely on our robust instrumental variables (RIV) algorithm implemented via a GMM approach. In this dynamic or time-varying conditional context, we generally find that the most significant factor is the market one, but illiquidity may matter depending on which states or estimation methods we consider. In particular, sectors whose returns embed a market illiquidity premium are more exposed to a binding funding constraint in times of crisis, which leads to deleveraging and a resulting decrease in systematic risk.


Asunto(s)
Comercio , Algoritmos , Humanos , Modelos Econométricos
11.
Med Phys ; 46(2): 800-810, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30447155

RESUMEN

PURPOSE: Prostate cancer is the most common noncutaneous cancer among men in the USA. Focal laser thermal ablation (FLA) has the potential to control small tumors while preserving urinary and erectile function by leaving the neurovascular bundles and urethral sphincters intact. Accurate needle guidance is critical to the success of FLA. Multiparametric magnetic resonance images (mpMRI) can be used to identify targets, guide needles, and assess treatment outcomes. In this study, we evaluated the location of ablation zones relative to targeted lesions in 23 patients who underwent FLA therapy in a phase II trial. The ablation zone margins and unablated tumor volume were measured to determine whether complete coverage of each tumor was achieved, which would be considered a clinically successful ablation. METHODS: Preoperative mpMRI was acquired for each patient 2-3 months preceding the procedure and the prostate and lesion(s) were manually contoured on 3 T T2-weighted axial images. The prostate and ablation zone(s) were also manually contoured on postablation 1.5 T T1-weighted contrast-enhanced axial images acquired immediately after the procedure intraoperatively. The lesion surface was nonrigidly registered to the postablation image using an initial affine registration followed by nonrigid thin-plate spline registration of the prostate surfaces. The margins between the registered lesion and ablation zone were calculated using a uniform spherical distribution of rays, and the volume of intersection was also calculated. Each prostate was contoured five times to determine the segmentation variability and its effect on intersection of the lesion and ablation zone. RESULTS: Our study showed that the boundaries of the segmented tumor and ablation zone were close. Of the 23 lesions that were analyzed, 11 were completely covered by the ablation zone and 12 were partially covered. A shift of 1.0, 2.0, and 2.6 mm would result in 19, 21, and all tumors completely covered by the ablation zone, respectively. The median unablated tumor volume across all tumors was 0.1  mm 3 with an IQR of 3.7  mm 3 , which was 0.2% of the median tumor volume (46.5  mm 3 with an IQR of 46.3  mm 3 ). The median extension of the tumors beyond the ablation zone, in cases which were partially ablated, was 0.9 mm (IQR of 1.3 mm), with the furthest tumor extending 2.6 mm. CONCLUSION: In all cases, the boundary of the tumor was close to the boundary of the ablation zone, and in some cases, the boundary of the ablation zone did not completely enclose the tumor. Our results suggest that some of the ablations were not clinically successful and that there is a need for more accurate needle tracking and guidance methods. Limitations of the study include errors in the registration and segmentation methods used as well as different voxel sizes and contrast between the registered T2 and T1 MRI sequences and asymmetric swelling of the prostate postprocedurally.


Asunto(s)
Terapia por Láser/métodos , Imagen por Resonancia Magnética , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/cirugía , Cirugía Asistida por Computador/métodos , Humanos , Masculino , Persona de Mediana Edad
12.
Can Urol Assoc J ; 10(9-10): 342-348, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27800057

RESUMEN

INTRODUCTION: This study evaluates the clinical benefit of magnetic resonance-transrectal ultrasound (MR-TRUS) fusion biopsy over systematic biopsy between first-time and repeat prostate biopsy patients with prior atypical small acinar proliferation (ASAP). MATERIALS: 100 patients were enrolled in a single-centre prospective cohort study: 50 for first biopsy, 50 for repeat biopsy with prior ASAP. Multiparameteric magnetic resonance imaging (MP-MRI) and standard 12-core ultrasound biopsy (Std-Bx) were performed on all patients. Targeted biopsy using MRI-TRUS fusion (Fn-Bx) was performed f suspicious lesions were identified on the pre-biopsy MP-MRI. Classification of clinically significant disease was assessed independently for the Std-Bx vs. Fn-Bx cores to compare the two approaches. RESULTS: Adenocarcinoma was detected in 49/100 patients (26 first biopsy, 23 ASAP biopsy), with 25 having significant disease (17 first, 8 ASAP). Fn-Bx demonstrated significantly higher per-core cancer detection rates, cancer involvement, and Gleason scores for first-time and ASAP patients. However, Fn-Bx was significantly more likely to detect significant cancer missed on Std-Bx for ASAP patients than first-time biopsy patients. The addition of Fn-Bx to Std-Bx for ASAP patients had a 166.7% relative risk reduction for missing Gleason ≥ 3 + 4 disease (number needed to image with MP-MRI=10 patients) compared to 6.3% for first biopsy (number to image=50 patients). Negative predictive value of MP-MRI for negative biopsy was 79% for first-time and 100% for ASAP patients, with median followup of 32.1 ± 15.5 months. CONCLUSIONS: MR-TRUS Fn-Bx has a greater clinical impact for repeat biopsy patients with prior ASAP than biopsy-naïve patients by detecting more significant cancers that are missed on Std-Bx.

13.
Med Phys ; 40(7): 072903, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23822454

RESUMEN

PURPOSE: Prostate segmentation is an important step in the planning and treatment of 3D end-firing transrectal ultrasound (TRUS) guided prostate biopsy. In order to improve the accuracy and efficiency of prostate segmentation in 3D TRUS images, an improved level set method is incorporated into a rotational-slice-based 3D prostate segmentation to decrease the accumulated segmentation errors produced by the slice-by-slice segmentation method. METHODS: A 3D image is first resliced into 2D slices in a rotational manner in both the clockwise and counterclockwise directions. All slices intersect approximately along the rotational scanning axis and have an equal angular spacing. Six to eight boundary points are selected to initialize a level set function to extract the prostate contour within the first slice. The segmented contour is then propagated to the adjacent slice and is used as the initial contour for segmentation. This process is repeated until all slices are segmented. A modified distance regularization level set method is used to segment the prostate in all resliced 2D slices. In addition, shape-constraint and local-region-based energies are imposed to discourage the evolved level set function to leak in regions with weak edges or without edges. An anchor point based energy is used to promote the level set function to pass through the initial selected boundary points. The algorithm's performance was evaluated using distance- and volume-based metrics (sensitivity (Se), Dice similarity coefficient (DSC), mean absolute surface distance (MAD), maximum absolute surface distance (MAXD), and volume difference) by comparison with expert delineations. RESULTS: The validation results using thirty 3D patient images showed that the authors' method can obtain a DSC of 93.1% ± 1.6%, a sensitivity of 93.0% ± 2.0%, a MAD of 1.18 ± 0.36 mm, a MAXD of 3.44 ± 0.8 mm, and a volume difference of 2.6 ± 1.9 cm(3) for the entire prostate. A reproducibility experiment demonstrated that the proposed method yielded low intraobserver and interobserver variability in terms of DSC. The mean segmentation time of the authors' method for all patient 3D TRUS images was 55 ± 3.5 s, in addition to 30 ± 5 s for initialization. CONCLUSIONS: To address the challenges involved with slice-based 3D prostate segmentation, a level set based method is proposed in this paper. This method is especially developed for a 3D end-firing TRUS guided prostate biopsy system. The extensive experimental results demonstrate that the proposed method is accurate, robust, and computationally efficient.


Asunto(s)
Biopsia Guiada por Imagen/métodos , Imagenología Tridimensional/métodos , Próstata/diagnóstico por imagen , Próstata/patología , Recto , Rotación , Algoritmos , Humanos , Masculino , Ultrasonografía
14.
Med Phys ; 40(4): 042902, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23556924

RESUMEN

PURPOSE: Prostate adenocarcinoma is the most common noncutaneous malignancy in American men with over 200,000 new cases diagnosed each year. Prostate interventional therapy, such as cryotherapy and brachytherapy, is an effective treatment for prostate cancer. Its success relies on the correct needle implant position. This paper proposes a robust and efficient needle segmentation method, which acts as an aid to localize the needle in three-dimensional (3D) transrectal ultrasound (TRUS) guided prostate therapy. METHODS: The procedure of locating the needle in a 3D TRUS image is a three-step process. First, the original 3D ultrasound image containing a needle is cropped; the cropped image is then converted to a binary format based on its histogram. Second, a 3D Hough transform based needle segmentation method is applied to the 3D binary image in order to locate the needle axis. The position of the needle endpoint is finally determined by an optimal threshold based analysis of the intensity probability distribution. The overall efficiency is improved through implementing a coarse-fine searching strategy. The proposed method was validated in tissue-mimicking agar phantoms, chicken breast phantoms, and 3D TRUS patient images from prostate brachytherapy and cryotherapy procedures by comparison to the manual segmentation. The robustness of the proposed approach was tested by means of varying parameters such as needle insertion angle, needle insertion length, binarization threshold level, and cropping size. RESULTS: The validation results indicate that the proposed Hough transform based method is accurate and robust, with an achieved endpoint localization accuracy of 0.5 mm for agar phantom images, 0.7 mm for chicken breast phantom images, and 1 mm for in vivo patient cryotherapy and brachytherapy images. The mean execution time of needle segmentation algorithm was 2 s for a 3D TRUS image with size of 264 × 376 × 630 voxels. CONCLUSIONS: The proposed needle segmentation algorithm is accurate, robust, and suitable for 3D TRUS guided prostate transperineal therapy.


Asunto(s)
Braquiterapia/métodos , Crioterapia/métodos , Imagenología Tridimensional/métodos , Agujas , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/terapia , Ultrasonografía Intervencional/métodos , Algoritmos , Braquiterapia/instrumentación , Crioterapia/instrumentación , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Perineo/diagnóstico por imagen , Perineo/cirugía , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
15.
IEEE Trans Med Imaging ; 32(4): 770-85, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23303689

RESUMEN

In this paper, we propose a novel global optimization based 3-D multi-region segmentation algorithm for T1-weighted black-blood carotid magnetic resonance (MR) images. The proposed algorithm partitions a 3-D carotid MR image into three regions: wall, lumen, and background. The algorithm performs such partitioning by simultaneously evolving two coupled 3-D surfaces of carotid artery adventitia boundary (AB) and lumen-intima boundary (LIB) while preserving their anatomical inter-surface consistency such that the LIB is always located within the AB. In particular, we show that the proposed algorithm results in a fully time implicit scheme that propagates the two linearly ordered surfaces of the AB and LIB to their globally optimal positions during each discrete time frame by convex relaxation. In this regard, we introduce the continuous max-flow model and prove its duality/equivalence to the convex relaxed optimization problem with respect to each evolution step. We then propose a fully parallelized continuous max-flow-based algorithm, which can be readily implemented on a GPU to achieve high computational efficiency. Extensive experiments, with four users using 12 3T MR and 26 1.5T MR images, demonstrate that the proposed algorithm yields high accuracy and low operator variability in computing vessel wall volume. In addition, we show the algorithm outperforms previous methods in terms of high computational efficiency and robustness with fewer user interactions.


Asunto(s)
Arterias Carótidas/anatomía & histología , Arterias Carótidas/patología , Imagenología Tridimensional/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Aterosclerosis/patología , Bases de Datos Factuales , Humanos , Reproducibilidad de los Resultados
16.
Med Image Comput Comput Assist Interv ; 15(Pt 1): 537-44, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23285593

RESUMEN

Prostate segmentation in 3D ultrasound images is an important step in the planning and treatment of 3D end-firing transrectal ultrasound (TRUS) guided prostate biopsy. A semi-automatic prostate segmentation method is presented in this paper, which integrates a modified distance regularization level set formulation with shape constraint to a rotational-slice-based 3D prostate segmentation method. Its performance, using different metrics, has been evaluated on a set of twenty 3D patient prostate images by comparison with expert delineations. The volume overlap ratio of 93.39 +/- 1.26% and the mean absolute surface distance of 1.16 +/- 0.34 mm were found in the quantitative validation result.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Biopsia Guiada por Imagen/métodos , Imagenología Tridimensional/métodos , Próstata/diagnóstico por imagen , Neoplasias de la Próstata/diagnóstico , Recto/diagnóstico por imagen , Ultrasonografía/métodos , Algoritmos , Biopsia/métodos , Diagnóstico por Imagen/métodos , Humanos , Masculino , Modelos Estadísticos , Reproducibilidad de los Resultados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...