Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Heliyon ; 10(9): e29932, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38726207

RESUMEN

Objectives: Appropriate tuberculosis (TB) management requires anti-TB drugs resistance detection. We assessed the performance of rapid resistance detection assays and their impact on treatment adaptation, focusing on isoniazid resistant (Hr) TB. Methods: From 2016 to 2022, all TB cases enrolled in 3 hospitals were reviewed for phenotypic drug susceptibility testing (p-DST) and genotypic DST (g-DST) performed by rapid molecular testing, and next generation sequencing (NGS). Clinical characteristics, treatment and outcome were collected for Hr-TB patients. The concordance between g-DST and p-DST results, and delay between treatment initiation and results of g-DST and p-DST were respectively recorded to assess the contribution of DST results on Hr-TB management. Results: Among 654 TB cases enrolled, 29 were Hr-TB. Concordance between g-DST by rapid molecular methods and p-DST was 76.9 %, whilst concordance between NGS-based g-DST and p-DST was 98.7 %. Rapid resistance detection significantly fastened Hr-TB treatment adaptation (median delay between g-DST results and treatment modification was 6 days). It consisted in fluoroquinolone implementation for 17/23 patients; outcome was favourable except for 2 patients who died before DST reporting. Conclusion: Rapid resistance detection fastened treatment adaptation. Also, NGS-based g-DST showed almost perfect concordance with p-DST, thus providing rapid and safe culture-free DST alternative.

2.
Kidney Int Rep ; 8(3): 596-605, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36938085

RESUMEN

Introduction: Exome sequencing (ES) has widened the field of nephrogenomics in adult nephrology. In addition to reporting the diagnostic yield of ES in an adult cohort study, we investigated the clinical implications of molecular diagnosis and developed a clinical score to predict the probability of obtaining positive result. Methods: From September 2018 we have used ES to prospectively perform a first-tier liberal exploration of adult nephropathies of unknown origin and/or when a genetic kidney disease was clinically suggested. We also analyzed copy number variant using the same assay. Results: Molecular diagnosis was made in 127 of 538 patients sequenced (diagnostic yield: 24%), comprising 47 distinct monogenic disorders. Eight of these monogenic disorders (17% [8/47]) accounted for 52% of genetic diagnoses. In 98% (n = 125/127) of the patients, the genetic information was reported to have major clinical implications. We developed a 4-value clinical score to predict the probability of obtaining a molecular diagnosis (area under the receiver operating characteristics curve [AUC] 0.726 [95% confidence interval: 0.670-0.782]) (available at http://allogenomics.com/score). Conclusion: This study reinforces the role of ES as a first-tier exploration for adult chronic kidney disease patients in whom phenotypes are often poor and atypical. Although external validation is required, our clinical score could be a useful tool for the implementation of nephrogenomics in adults.

3.
J Med Genet ; 59(12): 1234-1240, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36137615

RESUMEN

BACKGROUND: Despite the availability of whole exome (WES) and genome sequencing (WGS), chromosomal microarray (CMA) remains the first-line diagnostic test in most rare disorders diagnostic workup, looking for copy number variations (CNVs), with a diagnostic yield of 10%-20%. The question of the equivalence of CMA and WES in CNV calling is an organisational and economic question, especially when ordering a WGS after a negative CMA and/or WES. METHODS: This study measures the equivalence between CMA and GATK4 exome sequencing depth of coverage method in detecting coding CNVs on a retrospective cohort of 615 unrelated individuals. A prospective detection of WES-CNV on a cohort of 2418 unrelated individuals, including the 615 individuals from the validation cohort, was performed. RESULTS: On the retrospective validation cohort, every CNV detectable by the method (ie, a CNV with at least one exon not in a dark zone) was accurately called (64/64 events). In the prospective cohort, 32 diagnoses were performed among the 2418 individuals with CNVs ranging from 704 bp to aneuploidy. An incidental finding was reported. The overall increase in diagnostic yield was of 1.7%, varying from 1.2% in individuals with multiple congenital anomalies to 1.9% in individuals with chronic kidney failure. CONCLUSION: Combining single-nucleotide variant (SNV) and CNV detection increases the suitability of exome sequencing as a first-tier diagnostic test for suspected rare Mendelian disorders. Before considering the prescription of a WGS after a negative WES, a careful reanalysis with updated CNV calling and SNV annotation should be considered.


Asunto(s)
Variaciones en el Número de Copia de ADN , Exoma , Humanos , Variaciones en el Número de Copia de ADN/genética , Exoma/genética , Estudios Retrospectivos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Estudios Prospectivos
4.
Genet Med ; 24(6): 1316-1327, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35311657

RESUMEN

PURPOSE: Retrospective interpretation of sequenced data in light of the current literature is a major concern of the field. Such reinterpretation is manual and both human resources and variable operating procedures are the main bottlenecks. METHODS: Genome Alert! method automatically reports changes with potential clinical significance in variant classification between releases of the ClinVar database. Using ClinVar submissions across time, this method assigns validity category to gene-disease associations. RESULTS: Between July 2017 and December 2019, the retrospective analysis of ClinVar submissions revealed a monthly median of 1247 changes in variant classification with potential clinical significance and 23 new gene-disease associations. Re-examination of 4929 targeted sequencing files highlighted 45 changes in variant classification, and of these classifications, 89% were expert validated, leading to 4 additional diagnoses. Genome Alert! gene-disease association catalog provided 75 high-confidence associations not available in the OMIM morbid list; of which, 20% became available in OMIM morbid list For more than 356 negative exome sequencing data that were reannotated for variants in these 75 genes, this elective approach led to a new diagnosis. CONCLUSION: Genome Alert! (https://genomealert.univ-grenoble-alpes.fr/) enables systematic and reproducible reinterpretation of acquired sequencing data in a clinical routine with limited human resource effect.


Asunto(s)
Bases de Datos Genéticas , Variación Genética , Variación Genética/genética , Genoma Humano/genética , Genómica , Humanos , Fenotipo , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...