Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
FEBS J ; 291(12): 2683-2702, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38297966

RESUMEN

In cells, phospholipids contain acyl chains of variable lengths and saturation, features that affect their functions. Their de novo synthesis in the endoplasmic reticulum takes place via the cytidine diphosphate diacylglycerol (CDP-DAG) and Kennedy pathways, which are conserved in eukaryotes. PA is a key intermediate for all phospholipids (PI, PIPs, PS, PE, PC, PG and CL). The de novo synthesis of PA occurs by acylation of glycerophosphate leading to the synthesis of 1-acyl lysoPA and subsequent acylation of 1-acyl lysoPA at the sn-2 position. Using membranes from Escherichia coli overexpressing MLG1, we showed that the yeast gene MLG1 encodes an acyltransferase, leading specifically to the synthesis of PA from 1-acyl lysoPA. Moreover, after their de novo synthesis, phospholipids can be remodelled by acyl exchange with one and/or two acyl chains exchanged at the sn-1 and/or sn-2 position. Based on shotgun lipidomics of the reference and mlg1Δ strains, as well as biochemical assays for acyltransferase activities, we identified an additional remodelling activity for Mlg1p, namely, incorporation of palmitic acid into the sn-1 position of PS and PE. By using confocal microscopy and subcellular fractionation, we also found that this acyltransferase is located in ER membranes associated with mitochondria, a finding that highlights the importance of these organelles in the global cellular metabolism of lipids.


Asunto(s)
Aciltransferasas , Retículo Endoplásmico , Mitocondrias , Fosfolípidos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplásmico/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , Fosfolípidos/metabolismo , Fosfolípidos/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Membranas Intracelulares/metabolismo
2.
Traffic ; 23(2): 120-136, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34908215

RESUMEN

Cell polarity is achieved by regulators such as small G proteins, exocyst members and phosphoinositides, with the latter playing a key role when bound to the exocyst proteins Sec3p and Exo70p, and Rho GTPases. This ensures asymmetric growth via the routing of proteins and lipids to the cell surface using actin cables. Previously, using a yeast mutant for a lysophosphatidylinositol acyl transferase encoded by the PSI1 gene, we demonstrated the role of stearic acid in the acyl chain of phosphoinositides in cytoskeletal organization and secretion. Here, we use a genetic approach to characterize the effect on late steps of the secretory pathway. The constitutive overexpression of PSI1 in mutants affecting kinases involved in the phosphoinositide pathway demonstrated the role of molecular species containing stearic acid in bypassing a lack of phosphatidylinositol-4-phosphate (PI(4)P) at the plasma membrane, which is essential for the function of the Cdc42p module. Decreasing the levels of stearic acid-containing phosphoinositides modifies the environment of the actors involved in the control of late steps in the secretory pathway. This leads to decreased interactions between Exo70p and Sec3p, with Cdc42p, Rho1p and Rho3p, because of disruption of the GTP/GDP ratio of at least Rho1p and Rho3p GTPases, thereby preventing activation of the exocyst.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Exocitosis/fisiología , Fosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácidos Esteáricos , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rho/genética
3.
iScience ; 24(2): 102115, 2021 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-33615205

RESUMEN

Sentinel species are playing an indispensable role in monitoring environmental pollution in aquatic ecosystems. Many pollutants found in water prove to be endocrine disrupting chemicals that could cause disruptions in lipid homeostasis in aquatic species. A comprehensive profiling of the lipidome of these species is thus an essential step toward understanding the mechanism of toxicity induced by pollutants. Both the composition and spatial distribution of lipids in freshwater crustacean Gammarus fossarum were extensively examined herein. The baseline lipidome of gammarids of different sex and reproductive stages was established by high throughput shotgun lipidomics. Spatial lipid mapping by high resolution mass spectrometry imaging led to the discovery of sulfate-based lipids in hepatopancreas and their accumulation in mature oocytes. A diverse and dynamic lipid composition in G. fossarum was uncovered, which deepens our understanding of the biochemical changes during development and which could serve as a reference for future ecotoxicological studies.

4.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121266

RESUMEN

Lyso-lipid acyltransferases are enzymes involved in various processes such as lipid synthesis and remodelling. Here, we characterized the activity of an acyltransferase from Arabidopsis thaliana (LPIAT). In vitro, this protein, expressed in Escherichia coli membrane, displayed a 2-lyso-phosphatidylinositol acyltransferase activity with a specificity towards saturated long chain acyl CoAs (C16:0- and C18:0-CoAs), allowing the remodelling of phosphatidylinositol. In planta, LPIAT gene was expressed in mature seeds and very transiently during seed imbibition, mostly in aleurone-like layer cells. Whereas the disruption of this gene did not alter the lipid composition of seed, its overexpression in leaves promoted a strong increase in the phosphatidylinositol phosphates (PIP) level without affecting the PIP2 content. The spatial and temporal narrow expression of this gene as well as the modification of PIP metabolism led us to investigate its role in the control of seed germination. Seeds from the lpiat mutant germinated faster and were less sensitive to abscisic acid (ABA) than wild-type or overexpressing lines. We also showed that the protective effect of ABA on young seedlings against dryness was reduced for lpiat line. In addition, germination of lpiat mutant seeds was more sensitive to hyperosmotic stress. All these results suggest a link between phosphoinositides and ABA signalling in the control of seed germination.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Germinación , Osmorregulación , Fosfatos de Fosfatidilinositol/metabolismo , Semillas/crecimiento & desarrollo , Transducción de Señal , Ácido Abscísico/farmacología , Acilcoenzima A/metabolismo , Arabidopsis/efectos de los fármacos , Germinación/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Mutación/genética , Osmorregulación/efectos de los fármacos , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Salinidad , Semillas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
5.
Microb Cell ; 5(5): 220-232, 2018 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-29796387

RESUMEN

Cardiolipin (CL) optimizes diverse mitochondrial processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase Tafazzin (TAZ). Loss-of-function mutations in the TAZ gene are responsible for the Barth syndrome (BTHS), a rare X-linked cardiomyopathy, presumably because of a diminished OXPHOS capacity. Herein we show that a partial inhibition of cytosolic protein synthesis, either chemically with the use of cycloheximide or by specific genetic mutations, fully restores biogenesis and the activity of the oxidative phosphorylation system in a yeast BTHS model (taz1Δ). Interestingly, the defaults in CL were not suppressed, indicating that they are not primarily responsible for the OXPHOS deficiency in taz1Δ yeast. Low concentrations of cycloheximide in the picomolar range were beneficial to TAZ-deficient HeLa cells, as evidenced by the recovery of a good proliferative capacity. These findings reveal that a diminished capacity of CL remodeling deficient cells to preserve protein homeostasis is likely an important factor contributing to the pathogenesis of BTHS. This in turn, identifies cytosolic translation as a potential therapeutic target for the treatment of this disease.

6.
J Lipid Res ; 58(12): 2348-2364, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28986436

RESUMEN

Lipin-1 is a Mg2+-dependent phosphatidic acid phosphatase (PAP) that in mice is necessary for normal glycerolipid biosynthesis, controlling adipocyte metabolism, and adipogenic differentiation. Mice carrying inactivating mutations in the Lpin1 gene display the characteristic features of human familial lipodystrophy. Very little is known about the roles of lipin-1 in human adipocyte physiology. Apparently, fat distribution and weight is normal in humans carrying LPIN1 inactivating mutations, but a detailed analysis of adipose tissue appearance and functions in these patients has not been available so far. In this study, we performed a systematic histopathological, biochemical, and gene expression analysis of adipose tissue biopsies from human patients harboring LPIN1 biallelic inactivating mutations and affected by recurrent episodes of severe rhabdomyolysis. We also explored the adipogenic differentiation potential of human mesenchymal cell populations derived from lipin-1 defective patients. White adipose tissue from human LPIN1 mutant patients displayed a dramatic decrease in lipin-1 protein levels and PAP activity, with a concomitant moderate reduction of adipocyte size. Nevertheless, the adipose tissue develops without obvious histological signs of lipodystrophy and with normal qualitative composition of storage lipids. The increased expression of key adipogenic determinants such as SREBP1, PPARG, and PGC1A shows that specific compensatory phenomena can be activated in vivo in human adipocytes with deficiency of functional lipin-1.


Asunto(s)
Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Mutación , Fosfatidato Fosfatasa/genética , Rabdomiólisis/genética , Adipocitos/citología , Tejido Adiposo Blanco/citología , Adolescente , Alelos , Distribución de la Grasa Corporal , Peso Corporal , Estudios de Casos y Controles , Diferenciación Celular , Niño , Preescolar , Femenino , Regulación de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , PPAR gamma/genética , PPAR gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Fosfatidato Fosfatasa/deficiencia , Rabdomiólisis/metabolismo , Rabdomiólisis/patología , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo
7.
Dis Model Mech ; 10(4): 439-450, 2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28188263

RESUMEN

Cardiolipin (CL) is a diglycerol phospholipid mostly found in mitochondria where it optimizes numerous processes, including oxidative phosphorylation (OXPHOS). To function properly, CL needs to be unsaturated, which requires the acyltransferase tafazzin. Loss-of-function mutations in this protein are responsible for Barth syndrome (BTHS), presumably because of a diminished OXPHOS capacity. Here, we show that overexpressing Odc1p, a conserved oxodicarboxylic acid carrier located in the mitochondrial inner membrane, fully restores oxidative phosphorylation in a yeast model (taz1Δ) of BTHS. The rescuing activity involves the recovery of normal expression of key components that sustain oxidative phosphorylation, including cytochrome c and electron transport chain complexes IV and III, which are strongly downregulated in taz1Δ yeast. Interestingly, overexpression of Odc1p was also shown previously to rescue yeast models of mitochondrial diseases caused by defects in the assembly of ATP synthase and by mutations in the MPV17 protein that result in hepatocerebral mitochondrial DNA depletion syndrome. These findings define the transport of oxodicarboxylic acids across the inner membrane as a potential therapeutic target for a large spectrum of mitochondrial diseases, including BTHS.


Asunto(s)
Síndrome de Barth/metabolismo , Síndrome de Barth/patología , Transportadores de Ácidos Dicarboxílicos/metabolismo , Mitocondrias/metabolismo , Fosforilación Oxidativa , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/biosíntesis , Aerobiosis , Electroforesis en Gel de Poliacrilamida , Metabolismo Energético/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Proteínas Mitocondriales/metabolismo , Ácido Oléico/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Fosfolípidos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
8.
Mol Cell Biol ; 36(5): 765-80, 2016 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-26711260

RESUMEN

Phosphoinositides (PIPs) are present in very small amounts but are essential for cell signaling, morphogenesis, and polarity. By mass spectrometry, we demonstrated that some PIPs with stearic acyl chains were strongly disturbed in a psi1Δ Saccharomyces cerevisiae yeast strain deficient in the specific incorporation of a stearoyl chain at the sn-1 position of phosphatidylinositol. The absence of PIPs containing stearic acid induced disturbances in intracellular trafficking, although the total amount of PIPs was not diminished. Changes in PIPs also induced alterations in the budding pattern and defects in actin cytoskeleton organization (cables and patches). Moreover, when the PSI1 gene was impaired, a high proportion of cells with bipolar cortical actin patches that occurred concomitantly with the bipolar localization of Cdc42p was specifically found among diploid cells. This bipolar cortical actin phenotype, never previously described, was also detected in a bud9Δ/bud9Δ strain. Very interestingly, overexpression of PSI1 reversed this phenotype.


Asunto(s)
Fosfatidilinositoles/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Ácidos Esteáricos/metabolismo , Actinas/metabolismo , Actinas/ultraestructura , Aciltransferasas/genética , Aciltransferasas/metabolismo , Polaridad Celular , Eliminación de Gen , Fosfatidilinositoles/química , Fosfatidilinositoles/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ácidos Esteáricos/análisis
9.
Biochim Biophys Acta ; 1832(12): 2103-14, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23928362

RESUMEN

Lipin-1 deficiency is associated with massive rhabdomyolysis episodes in humans, precipitated by febrile illnesses. Despite well-known roles of lipin-1 in lipid biosynthesis and transcriptional regulation, the pathogenic mechanisms leading to rhabdomyolysis remain unknown. Here we show that primary myoblasts from lipin-1-deficient patients exhibit a dramatic decrease in LPIN1 expression and phosphatidic acid phosphatase 1 activity, and a significant accumulation of lipid droplets (LD). The expression levels of LPIN1-target genes [peroxisome proliferator-activated receptors delta and alpha (PPARδ, PPARα), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), acyl-coenzyme A dehydrogenase, very long (ACADVL), carnitine palmitoyltransferase IB and 2 (CPT1B and CPT2)] were not affected while lipin-2 protein level, a closely related member of the family, was increased. Microarray analysis of patients' myotubes identified 19 down-regulated and 51 up-regulated genes, indicating pleiotropic effects of lipin-1 deficiency. Special attention was paid to the up-regulated ACACB (acetyl-CoA carboxylase beta), a key enzyme in the fatty acid synthesis/oxidation balance. We demonstrated that overexpression of ACACB was associated with free fatty acid accumulation in patients' myoblasts whereas malonyl-carnitine (as a measure of malonyl-CoA) and CPT1 activity were in the normal range in basal conditions accordingly to the normal daily activity reported by the patients. Remarkably ACACB invalidation in patients' myoblasts decreased LD number and size while LPIN1 invalidation in controls induced LD accumulation. Further, pro-inflammatory treatments tumor necrosis factor alpha+Interleukin-1beta(TNF1α+IL-1ß) designed to mimic febrile illness, resulted in increased malonyl-carnitine levels, reduced CPT1 activity and enhanced LD accumulation, a phenomenon reversed by dexamethasone and TNFα or IL-1ß inhibitors. Our data suggest that the pathogenic mechanism of rhabdomyolysis in lipin-1-deficient patients combines the predisposing constitutive impairment of lipid metabolism and its exacerbation by pro-inflammatory cytokines.


Asunto(s)
Citocinas/farmacología , Mediadores de Inflamación/farmacología , Trastornos del Metabolismo de los Lípidos/etiología , Lípidos , Fibras Musculares Esqueléticas/patología , Mioblastos/patología , Fosfatidato Fosfatasa/genética , Biomarcadores/metabolismo , Western Blotting , Estudios de Casos y Controles , Ciclo Celular , Proliferación Celular , Niño , Preescolar , Estrés del Retículo Endoplásmico , Femenino , Perfilación de la Expresión Génica , Humanos , Trastornos del Metabolismo de los Lípidos/metabolismo , Trastornos del Metabolismo de los Lípidos/patología , Masculino , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mutación/genética , Mioblastos/efectos de los fármacos , Mioblastos/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Asociadas a Pancreatitis , Fosfatidato Fosfatasa/metabolismo , ARN Mensajero/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Rabdomiólisis/etiología , Rabdomiólisis/metabolismo , Rabdomiólisis/patología
10.
Anal Bioanal Chem ; 405(1): 203-13, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23064709

RESUMEN

Liquid chromatography coupled to tandem mass spectrometry has been compared to shotgun analysis with the objective of finding the best compromise for a single run analysis of whole cell phospholipids. Hydrophilic interaction liquid chromatography (HILIC), normal phase (NP), and reversed phase (RP) liquid chromatography were evaluated with reference phospholipids belonging to phosphatidic acid (PA), phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylinositol (PI), and phosphatidylserine (PS) classes. NP-HPLC- and RP-HPLC-ESI-MS/MS were applied to yeast phospholipidome analysis, using a wild-type strain and two strains defective for acyltransferases that are known to be involved in de novo phospholipid synthesis or phospholipid remodeling. The MRM mode was used for relative quantitation of individual compounds based on reference phospholipids bearing fatty acid chains with an odd number of carbon atoms. Combined LC-MS/MS was found superior to shotgun analysis, leading to a larger number of quantified species than shotgun analysis. Finally, RP-HPLC-MS/MS was the preferred method for its higher selectivity, robustness, and better repeatability.


Asunto(s)
Cromatografía Liquida/métodos , Fosfolípidos/química , Espectrometría de Masas en Tándem/métodos , Aciltransferasas/química , Carbono/química , Técnicas de Química Analítica , Cromatografía Líquida de Alta Presión/métodos , Hongos/metabolismo , Lípidos/química , Ácidos Fosfatidicos/química , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilgliceroles/química , Fosfatidilinositoles/química , Fosfatidilserinas/química , Reproducibilidad de los Resultados
11.
Mol Biol Cell ; 23(2): 233-46, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22090344

RESUMEN

For many years, lipid droplets (LDs) were considered to be an inert store of lipids. However, recent data showed that LDs are dynamic organelles playing an important role in storage and mobilization of neutral lipids. In this paper, we report the characterization of LOA1 (alias VPS66, alias YPR139c), a yeast member of the glycerolipid acyltransferase family. LOA1 mutants show abnormalities in LD morphology. As previously reported, cells lacking LOA1 contain more LDs. Conversely, we showed that overexpression results in fewer LDs. We then compared the lipidome of loa1Δ mutant and wild-type strains. Steady-state metabolic labeling of loa1Δ revealed a significant reduction in triacylglycerol content, while phospholipid (PL) composition remained unchanged. Interestingly, lipidomic analysis indicates that both PLs and glycerolipids are qualitatively affected by the mutation, suggesting that Loa1p is a lysophosphatidic acid acyltransferase (LPA AT) with a preference for oleoyl-CoA. This hypothesis was tested by in vitro assays using both membranes of Escherichia coli cells expressing LOA1 and purified proteins as enzyme sources. Our results from purification of subcellular compartments and proteomic studies show that Loa1p is associated with LD and active in this compartment. Loa1p is therefore a novel LPA AT and plays a role in LD formation.


Asunto(s)
Aciltransferasas/metabolismo , Homeostasis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Triglicéridos/metabolismo , Aciltransferasas/genética , Retículo Endoplásmico/enzimología , Técnicas de Silenciamiento del Gen , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
FEBS J ; 276(21): 6412-24, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19796168

RESUMEN

In yeast, both phosphatidylinositol and phosphatidylserine are synthesized from cytidine diphosphate-diacylglycerol. Because, as in other eukaryotes, phosphatidylinositol contains more saturated fatty acids than phosphatidylserine (and other phospholipids), it has been hypothesized that either phosphatidylinositol is synthesized from distinct cytidine diphosphate-diacylglycerol molecules, or that, after its synthesis, it is modified by a hypothetical acyltransferase that incorporates saturated fatty acid into neo-synthesized molecules of phosphatidylinositol. We used database search methods to identify an acyltransferase that could catalyze such an activity. Among the various proteins that we studied, we found that Psi1p (phosphatidylinositol stearoyl incorporating 1 protein) is required for the incorporation of stearate into phosphatidylinositol because GC and MS analyses of psi1Delta lipids revealed an almost complete disappearance of stearic (but not of palmitic acid) at the sn-1 position of this phospholipid. Moreover, it was found that, whereas glycerol 3-phosphate, lysophosphatidic acid and 1-acyl lysophosphatidylinositol acyltransferase activities were similar in microsomal membranes isolated from wild-type and psi1Delta cells, microsomal membranes isolated from psi1Delta cells are devoid of the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity that is present in microsomal membranes isolated from wild-type cells. Moreover, after the expression of PSI1 in transgenic psi1Delta cells, the sn-2-acyl-1-lysolysophosphatidylinositol acyltransferase activity was recovered, and was accompanied by a strong increase in the stearic acid content of lysophosphatidylinositol. As previously suggested for phosphatidylinositol from animal cells (which contains almost exclusively stearic acid as the saturated fatty acid), the results obtained in the present study demonstrate that the existence of phosphatidylinositol species containing stearic acid in yeast results from a remodeling of neo-synthesized molecules of phosphatidylinositol.


Asunto(s)
Fosfatidilinositoles/análisis , Fosfatidilinositoles/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Ácidos Esteáricos/análisis , Aciltransferasas/metabolismo , Microsomas/química
13.
J Biol Chem ; 284(28): 18734-41, 2009 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-19447891

RESUMEN

N-Acylethanolamines (NAEs) are lipids involved in several physiological processes in animal and plant cells. In brain, NAEs are ligands of endocannabinoid receptors, which modulate various signaling pathways. In plant, NAEs regulate seed germination and root development, and they are involved in plant defense against pathogen attack. This signaling activity is started by an enzyme called N-acylphosphatidylethanolamine (NAPE) synthase. This catalyzes the N-acylation of phosphatidylethanolamine to form NAPE, which is most likely hydrolyzed by phospholipase D beta/gamma isoforms to generate NAE. This compound is further catabolized by fatty amide hydrolase. The genes encoding the enzymes involved in NAE metabolism are well characterized except for the NAPE synthase gene(s). By heterologous expression in Escherichia coli and overexpression in plants, we characterized an acyltransferase from Arabidopsis thaliana (At1g78690p) catalyzing the synthesis of lipids identified as NAPEs (two-dimensional TLC, phospholipase D hydrolysis assay, and electrospray ionization-tandem mass spectrometry analyses). The ability of free fatty acid and acyl-CoA to be used as acyl donor was compared in vitro with E. coli membranes and purified enzyme (obtained by immobilized metal ion affinity chromatography). In both cases, NAPE was synthesized only in the presence of acyl-CoA. beta-Glucuronidase promoter experiments revealed a strong expression in roots and young tissues of plants. Using yellow fluorescent protein fusion, we showed that the NAPE synthase is located in the plasmalemma of plant cells.


Asunto(s)
Aciltransferasas/química , Arabidopsis/enzimología , Aciltransferasas/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Cromatografía en Capa Delgada/métodos , Escherichia coli/enzimología , Regulación de la Expresión Génica de las Plantas , Hidrólisis , Lípidos/química , Proteínas Luminiscentes/química , Datos de Secuencia Molecular , Fosfolipasa D/química , Raíces de Plantas/metabolismo , Plantas/metabolismo , Isoformas de Proteínas , Homología de Secuencia de Aminoácido
14.
Biochem J ; 387(Pt 3): 617-26, 2005 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-15588229

RESUMEN

When the yeast protein Ypr140w was expressed in Escherichia coli, a lyso-PC [lysophosphatidylcholine (1-acylglycerophosphorylcholine)] acyltransferase activity was found associated with the membranes of the bacteria. To our knowledge, this is the first identification of a protein capable of catalysing the acylation of lyso-PC molecules to form PC. Fluorescence microscopy analysis of living yeasts revealed that the fusion protein Ypr140w-green fluorescent protein is targeted to the mitochondria. Moreover, in contrast with wild-type cells, in the absence of acyl-CoA, the yeast mutant deleted for the YPR140w gene has no lyso-PC acyltransferase activity associated with the mitochondrial fraction. When yeast cells were grown in the presence of lactate, the mutant synthesized 2-fold more triacylglycerols when compared with the wild-type. Moreover, its mitochondrial membranes contained a lesser amount of PC and cardiolipin, and the fatty acid composition of these latter was greatly changed. These modifications were accompanied by a 2-fold increase in the respiration rates (states 3 and 4) of the mitochondria. The relationship between the deletion of the YPR140w gene and the lipid composition of the ypr140wDelta cells is discussed.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Aciltransferasas/metabolismo , Lípidos/biosíntesis , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Triglicéridos/biosíntesis , Secuencia de Aminoácidos , Membrana Celular/enzimología , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
15.
Nat Biotechnol ; 21(2): 143-9, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12514739

RESUMEN

We report on the production of hydrocortisone, the major adrenal glucocorticoid of mammals and an important intermediate of steroidal drug synthesis, from a simple carbon source by recombinant Saccharomyces cerevisiae strains. An artificial and fully self-sufficient biosynthetic pathway involving 13 engineered genes was assembled and expressed in a single yeast strain. Endogenous sterol biosynthesis was rerouted to produce compatible sterols to serve as substrates for the heterologous part of the pathway. Biosynthesis involves eight mammalian proteins (mature forms of CYP11A1, adrenodoxin (ADX), and adrenodoxin reductase (ADR); mitochondrial forms of ADX and CYP11B1; 3beta-HSD, CYP17A1, and CYP21A1). Optimization involved modulating the two mitochondrial systems and disrupting of unwanted side reactions associated with ATF2, GCY1, and YPR1 gene products. Hydrocortisone was the major steroid produced. This work demonstrates the feasibility of transfering a complex biosynthetic pathway from higher eukaryotes into microorganisms.


Asunto(s)
Carbono/metabolismo , Ingeniería Genética/métodos , Hidrocortisona/biosíntesis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Animales , Bovinos , Clonación Molecular , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Etanol/metabolismo , Regulación Fúngica de la Expresión Génica , Glucosa/metabolismo , Humanos , Hidrocortisona/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Control de Calidad , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinación Genética , Saccharomyces cerevisiae/clasificación , Especificidad de la Especie
16.
J Lipid Res ; 43(7): 1150-4, 2002 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12091500

RESUMEN

Imidazole catalyzed acylations of lysolipids by acyl-CoAs in water at room temperature and at a pH close to neutrality. In the presence of oleoyl-CoA and either lysophosphatidylcholine, 1-palmitoyl-sn-glycero-3-phosphocholine (LPC); lysophosphatidylglycerol, monoacyl-sn-glycero-3-phosphoglycerol; lysophosphatidyl acid, 1-oleoyl-sn-glycero-3-phosphate; lysophosphatidylserine, monoacyl-sn-glycero-3-phosphoserin; or lysophosphatidylethanolamine, monoacyl-sn-glycero-3-phosphoethanolamine, the corresponding phospholipids were synthesized. Similarly, the use of lyso-platelet activating factor, an ether analog of LPC, yielded the formation of 1-O-alkyl-2-oleoyl-sn-glycero-3-phosphocholine. In the presence of LPC, an imidazole-catalyzed synthesis of phosphatidylcholine (PC) occurred when medium, long, and very long chain acyl-CoAs were added. With hydroxyacyl-CoA, a similar PC synthesis was obtained. The process described in the present paper appears to offer several potential applications of interest for the synthesis of glycerophospholipids and triglycerides with labeled and/or an unusual or fragile fatty acid, or when suitable acyltransferases have not yet been described in the literature and/or are not commercially available. The method described is very safe and simple since lipids can be synthesized in tubes containing 0.7% imidazole in water, and left for a few hours at room temperature on the bench.


Asunto(s)
Glicerofosfolípidos/síntesis química , Imidazoles/química , Acilación , Catálisis , Cromatografía en Capa Delgada , Glicerofosfolípidos/química
17.
Biochim Biophys Acta ; 1581(1-2): 21-8, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11960748

RESUMEN

Plastids greatly rely on the import of extraplastidial precursors for the synthesis of their own lipids, and several studies have shown that a lyso-PC acyltransferase located in the envelope may be involved in the import process. Because the presence of heavy metals in soil or in nutrient solutions induces changes in the lipid composition of plastid membranes (and therefore greatly reduces the photosynthetic capability of plants), we analysed the effect of several metal salts on plastidial lyso-PC acyltransferase activity. Among the 12 heavy metals studied, silver, copper, mercury and lead inhibited this activity. Metal bound to the enzyme was not - or only very slightly - released from the protein except when thiol-reducing agents (and not imidazole) were added. The results strongly suggest that the inhibitory effect is due to a formation of mercaptide between metal and cysteine(s). The relationship between the inhibition of the plastidial lyso-PC acyltransferase activity and the in vivo effects of metal salts on the plastid membranes is discussed.


Asunto(s)
1-Acilglicerofosfocolina O-Aciltransferasa/metabolismo , Inhibidores Enzimáticos/farmacología , Metales Pesados/farmacología , Fosfatidilcolinas/biosíntesis , Plastidios/enzimología , 1-Acilglicerofosfocolina O-Aciltransferasa/química , Sitios de Unión , Cobre/metabolismo , Cobre/farmacología , Cisteína/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/metabolismo , Plomo/metabolismo , Plomo/farmacología , Mercurio/metabolismo , Mercurio/farmacología , Metales Pesados/metabolismo , Plastidios/efectos de los fármacos , Plastidios/metabolismo , Unión Proteica , Plata/metabolismo , Plata/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA