Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 21(24): 10532-10537, 2021 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-34851122

RESUMEN

In electronic and optoelectronic devices made from van der Waals heterostructures, electric fields can induce substantial band structure changes which are crucial to device operation but cannot usually be directly measured. Here, we use spatially resolved angle-resolved photoemission spectroscopy to monitor changes in band alignment of the component layers, corresponding to band structure changes of the composite heterostructure system, that are produced by electrostatic gating. Our devices comprise graphene on a monolayer semiconductor, WSe2 or MoSe2, atop a boron nitride dielectric and a graphite gate. Applying a gate voltage creates an electric field that shifts the semiconductor bands relative to those in the graphene by up to 0.2 eV. The results can be understood in simple terms by assuming that the materials do not hybridize.

2.
Nature ; 572(7768): 220-223, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31316202

RESUMEN

The ability to directly monitor the states of electrons in modern field-effect devices-for example, imaging local changes in the electrical potential, Fermi level and band structure as a gate voltage is applied-could transform our understanding of the physics and function of a device. Here we show that micrometre-scale, angle-resolved photoemission spectroscopy1-3 (microARPES) applied to two-dimensional van der Waals heterostructures4 affords this ability. In two-terminal graphene devices, we observe a shift of the Fermi level across the Dirac point, with no detectable change in the dispersion, as a gate voltage is applied. In two-dimensional semiconductor devices, we see the conduction-band edge appear as electrons accumulate, thereby firmly establishing the energy and momentum of the edge. In the case of monolayer tungsten diselenide, we observe that the bandgap is renormalized downwards by several hundreds of millielectronvolts-approaching the exciton energy-as the electrostatic doping increases. Both optical spectroscopy and microARPES can be carried out on a single device, allowing definitive studies of the relationship between gate-controlled electronic and optical properties. The technique provides a powerful way to study not only fundamental semiconductor physics, but also intriguing phenomena such as topological transitions5 and many-body spectral reconstructions under electrical control.

3.
ACS Nano ; 13(2): 2136-2142, 2019 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-30676744

RESUMEN

Atomically thin films of III-VI post-transition metal chalcogenides (InSe and GaSe) form an interesting class of two-dimensional semiconductors that feature a strong variation of their band gap as a function of the number of layers in the crystal and, specifically for InSe, an expected crossover from a direct gap in the bulk to a weakly indirect band gap in monolayers and bilayers. Here, we apply angle-resolved photoemission spectroscopy with submicrometer spatial resolution (µARPES) to visualize the layer-dependent valence band structure of mechanically exfoliated crystals of InSe. We show that for one-layer and two-layer InSe the valence band maxima are away from the Γ-point, forming an indirect gap, with the conduction band edge known to be at the Γ-point. In contrast, for six or more layers the band gap becomes direct, in good agreement with theoretical predictions. The high-quality monolayer and bilayer samples enable us to resolve, in the photoluminescence spectra, the band-edge exciton (A) from the exciton (B) involving holes in a pair of deeper valence bands, degenerate at Γ, with a splitting that agrees with both µARPES data and the results of DFT modeling. Due to the difference in symmetry between these two valence bands, light emitted by the A-exciton should be predominantly polarized perpendicular to the plane of the two-dimensional crystal, which we have verified for few-layer InSe crystals.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...