Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Med Phys ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843540

RESUMEN

BACKGROUND: Computer algorithms that simulate lower-doses computed tomography (CT) images from clinical-dose images are widely available. However, most operate in the projection domain and assume access to the reconstruction method. Access to commercial reconstruction methods may often not be available in medical research, making image-domain noise simulation methods useful. However, the introduction of non-linear reconstruction methods, such as iterative and deep learning-based reconstruction, makes noise insertion in the image domain intractable, as it is not possible to determine the noise textures analytically. PURPOSE: To develop a deep learning-based image-domain method to generate low-dose CT images from clinical-dose CT (CDCT) images for non-linear reconstruction methods. METHODS: We propose a fully image domain-based method, utilizing a series of three convolutional neural networks (CNNs), which, respectively, denoise CDCT images, predict the standard deviation map of the low-dose image, and generate the noise power spectra (NPS) of local patches throughout the low-dose image. All three models have U-net-based architectures and are partly or fully three-dimensional. As a use case for this study and with no loss of generality, we use paired low-dose and clinical-dose brain CT scans. A dataset of 326 $\hskip.001pt 326$ paired scans was retrospectively obtained. All images were acquired with a wide-area detector clinical system and reconstructed using its standard clinical iterative algorithm. Each pair was registered using rigid registration to correct for motion between acquisitions. The data was randomly partitioned into training ( 251 $\hskip.001pt 251$ samples), validation ( 25 $\hskip.001pt 25$ samples), and test ( 50 $\hskip.001pt 50$ samples) sets. The performance of each of these three CNNs was validated separately. For the denoising CNN, the local standard deviation decrease, and bias were determined. For the standard deviation map CNN, the real and estimated standard deviations were compared locally. Finally, for the NPS CNN, the NPS of the synthetic and real low-dose noise were compared inside and outside the skull. Two proof-of-concept denoising studies were performed to determine if the performance of a CNN- or a gradient-based denoising filter on the synthetic low-dose data versus real data differed. RESULTS: The denoising network had a median decrease in noise in the cerebrospinal fluid by a factor of 1.71 $1.71$ and introduced a median bias of + 0.7 $ + 0.7$ HU. The network for standard deviation map estimation had a median error of + 0.1 $ + 0.1$ HU. The noise power spectrum estimation network was able to capture the anisotropic and shift-variant nature of the noise structure by showing good agreement between the synthetic and real low-dose noise and their corresponding power spectra. The two proof of concept denoising studies showed only minimal difference in standard deviation improvement ratio between the synthetic and real low-dose CT images with the median difference between the two being 0.0 and +0.05 for the CNN- and gradient-based filter, respectively. CONCLUSION: The proposed method demonstrated good performance in generating synthetic low-dose brain CT scans without access to the projection data or to the reconstruction method. This method can generate multiple low-dose image realizations from one clinical-dose image, so it is useful for validation, optimization, and repeatability studies of image-processing algorithms.

2.
J Magn Reson Imaging ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38581127

RESUMEN

In breast imaging, there is an unrelenting increase in the demand for breast imaging services, partly explained by continuous expanding imaging indications in breast diagnosis and treatment. As the human workforce providing these services is not growing at the same rate, the implementation of artificial intelligence (AI) in breast imaging has gained significant momentum to maximize workflow efficiency and increase productivity while concurrently improving diagnostic accuracy and patient outcomes. Thus far, the implementation of AI in breast imaging is at the most advanced stage with mammography and digital breast tomosynthesis techniques, followed by ultrasound, whereas the implementation of AI in breast magnetic resonance imaging (MRI) is not moving along as rapidly due to the complexity of MRI examinations and fewer available dataset. Nevertheless, there is persisting interest in AI-enhanced breast MRI applications, even as the use of and indications of breast MRI continue to expand. This review presents an overview of the basic concepts of AI imaging analysis and subsequently reviews the use cases for AI-enhanced MRI interpretation, that is, breast MRI triaging and lesion detection, lesion classification, prediction of treatment response, risk assessment, and image quality. Finally, it provides an outlook on the barriers and facilitators for the adoption of AI in breast MRI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 6.

3.
Cancer Imaging ; 24(1): 48, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38576031

RESUMEN

BACKGROUND: Ductal Carcinoma In Situ (DCIS) can progress to invasive breast cancer, but most DCIS lesions never will. Therefore, four clinical trials (COMET, LORIS, LORETTA, AND LORD) test whether active surveillance for women with low-risk Ductal carcinoma In Situ is safe (E. S. Hwang et al., BMJ Open, 9: e026797, 2019, A. Francis et al., Eur J Cancer. 51: 2296-2303, 2015, Chizuko Kanbayashi et al. The international collaboration of active surveillance trials for low-risk DCIS (LORIS, LORD, COMET, LORETTA),  L. E. Elshof et al., Eur J Cancer, 51, 1497-510, 2015). Low-risk is defined as grade I or II DCIS. Because DCIS grade is a major eligibility criteria in these trials, it would be very helpful to assess DCIS grade on mammography, informed by grade assessed on DCIS histopathology in pre-surgery biopsies, since surgery will not be performed on a significant number of patients participating in these trials. OBJECTIVE: To assess the performance and clinical utility of a convolutional neural network (CNN) in discriminating high-risk (grade III) DCIS and/or Invasive Breast Cancer (IBC) from low-risk (grade I/II) DCIS based on mammographic features. We explored whether the CNN could be used as a decision support tool, from excluding high-risk patients for active surveillance. METHODS: In this single centre retrospective study, 464 patients diagnosed with DCIS based on pre-surgery biopsy between 2000 and 2014 were included. The collection of mammography images was partitioned on a patient-level into two subsets, one for training containing 80% of cases (371 cases, 681 images) and 20% (93 cases, 173 images) for testing. A deep learning model based on the U-Net CNN was trained and validated on 681 two-dimensional mammograms. Classification performance was assessed with the Area Under the Curve (AUC) receiver operating characteristic and predictive values on the test set for predicting high risk DCIS-and high-risk DCIS and/ or IBC from low-risk DCIS. RESULTS: When classifying DCIS as high-risk, the deep learning network achieved a Positive Predictive Value (PPV) of 0.40, Negative Predictive Value (NPV) of 0.91 and an AUC of 0.72 on the test dataset. For distinguishing high-risk and/or upstaged DCIS (occult invasive breast cancer) from low-risk DCIS a PPV of 0.80, a NPV of 0.84 and an AUC of 0.76 were achieved. CONCLUSION: For both scenarios (DCIS grade I/II vs. III, DCIS grade I/II vs. III and/or IBC) AUCs were high, 0.72 and 0.76, respectively, concluding that our convolutional neural network can discriminate low-grade from high-grade DCIS.


Asunto(s)
Neoplasias de la Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Aprendizaje Profundo , Humanos , Femenino , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/patología , Estudios Retrospectivos , Participación del Paciente , Espera Vigilante , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Mamografía , Carcinoma Ductal de Mama/diagnóstico , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/cirugía
4.
IEEE Trans Med Imaging ; PP2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38530714

RESUMEN

Pulmonary nodules may be an early manifestation of lung cancer, the leading cause of cancer-related deaths among both men and women. Numerous studies have established that deep learning methods can yield high-performance levels in the detection of lung nodules in chest X-rays. However, the lack of gold-standard public datasets slows down the progression of the research and prevents benchmarking of methods for this task. To address this, we organized a public research challenge, NODE21, aimed at the detection and generation of lung nodules in chest X-rays. While the detection track assesses state-of-the-art nodule detection systems, the generation track determines the utility of nodule generation algorithms to augment training data and hence improve the performance of the detection systems. This paper summarizes the results of the NODE21 challenge and performs extensive additional experiments to examine the impact of the synthetically generated nodule training images on the detection algorithm performance.

5.
Eur J Radiol ; 173: 111393, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38417186

RESUMEN

Artificial intelligence (AI) is infiltrating nearly all fields of science by storm. One notorious property that AI algorithms bring is their so-called black box character. In particular, they are said to be inherently unexplainable algorithms. Of course, such characteristics would pose a problem for the medical world, including radiology. The patient journey is filled with explanations along the way, from diagnoses to treatment, follow-up, and more. If we were to replace part of these steps with non-explanatory algorithms, we could lose grip on vital aspects such as finding mistakes, patient trust, and even the creation of new knowledge. In this article, we argue that, even for the darkest of black boxes, there is hope of understanding them. In particular, we compare the situation of understanding black box models to that of understanding the laws of nature in physics. In the case of physics, we are given a 'black box' law of nature, about which there is no upfront explanation. However, as current physical theories show, we can learn plenty about them. During this discussion, we present the process by which we make such explanations and the human role therein, keeping a solid focus on radiological AI situations. We will outline the AI developers' roles in this process, but also the critical role fulfilled by the practitioners, the radiologists, in providing a healthy system of continuous improvement of AI models. Furthermore, we explore the role of the explainable AI (XAI) research program in the broader context we describe.


Asunto(s)
Algoritmos , Inteligencia Artificial , Humanos , Aprendizaje , Examen Físico , Radiólogos
6.
J Med Imaging (Bellingham) ; 11(1): 014001, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38162417

RESUMEN

Purpose: We developed a segmentation method suited for both raw (for processing) and processed (for presentation) digital mammograms (DMs) that is designed to generalize across images acquired with systems from different vendors and across the two standard screening views. Approach: A U-Net was trained to segment mammograms into background, breast, and pectoral muscle. Eight different datasets, including two previously published public sets and six sets of DMs from as many different vendors, were used, totaling 322 screen film mammograms (SFMs) and 4251 DMs (2821 raw/processed pairs and 1430 only processed) from 1077 different women. Three experiments were done: first training on all SFM and processed images, second also including all raw images in training, and finally testing vendor generalization by leaving one dataset out at a time. Results: The model trained on SFM and processed mammograms achieved a good overall performance regardless of projection and vendor, with a mean (±std. dev.) dice score of 0.96±0.06 for all datasets combined. When raw images were included in training, the mean (±std. dev.) dice score for the raw images was 0.95±0.05 and for the processed images was 0.96±0.04. Testing on a dataset with processed DMs from a vendor that was excluded from training resulted in a difference in mean dice varying between -0.23 to +0.02 from that of the fully trained model. Conclusions: The proposed segmentation method yields accurate overall segmentation results for both raw and processed mammograms independent of view and vendor. The code and model weights are made available.

7.
Magn Reson Imaging ; 107: 33-46, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38184093

RESUMEN

Acquiring fully-sampled MRI k-space data is time-consuming, and collecting accelerated data can reduce the acquisition time. Employing 2D Cartesian-rectilinear subsampling schemes is a conventional approach for accelerated acquisitions; however, this often results in imprecise reconstructions, even with the use of Deep Learning (DL), especially at high acceleration factors. Non-rectilinear or non-Cartesian trajectories can be implemented in MRI scanners as alternative subsampling options. This work investigates the impact of the k-space subsampling scheme on the quality of reconstructed accelerated MRI measurements produced by trained DL models. The Recurrent Variational Network (RecurrentVarNet) was used as the DL-based MRI-reconstruction architecture. Cartesian, fully-sampled multi-coil k-space measurements from three datasets were retrospectively subsampled with different accelerations using eight distinct subsampling schemes: four Cartesian-rectilinear, two Cartesian non-rectilinear, and two non-Cartesian. Experiments were conducted in two frameworks: scheme-specific, where a distinct model was trained and evaluated for each dataset-subsampling scheme pair, and multi-scheme, where for each dataset a single model was trained on data randomly subsampled by any of the eight schemes and evaluated on data subsampled by all schemes. In both frameworks, RecurrentVarNets trained and evaluated on non-rectilinearly subsampled data demonstrated superior performance, particularly for high accelerations. In the multi-scheme setting, reconstruction performance on rectilinearly subsampled data improved when compared to the scheme-specific experiments. Our findings demonstrate the potential for using DL-based methods, trained on non-rectilinearly subsampled measurements, to optimize scan time and image quality.


Asunto(s)
Algoritmos , Imagen por Resonancia Magnética , Estudios Retrospectivos , Imagen por Resonancia Magnética/métodos , Cintigrafía , Fantasmas de Imagen , Procesamiento de Imagen Asistido por Computador/métodos
8.
Med Phys ; 51(3): 2081-2095, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37656009

RESUMEN

BACKGROUND: Simulated computed tomography (CT) images allow for knowledge of the underlying ground truth and for easy variation of imaging conditions, making them ideal for testing and optimization of new applications or algorithms. However, simulating all processes that affect CT images can result in simulations that are demanding in terms of processing time and computer memory. Therefore, it is of interest to determine how much the simulation can be simplified while still achieving realistic results. PURPOSE: To develop a scanner-specific CT simulation using physics-based simulations for the position-dependent effects and shift-invariant image corruption methods for the detector effects. And to investigate the impact on image realism of introducing simplifications in the simulation process that lead to faster and less memory-demanding simulations. METHODS: To make the simulator realistic and scanner-specific, the spatial resolution and noise characteristics, and the exposure-to-detector output relationship of a clinical CT system were determined. The simulator includes a finite focal spot size, raytracing of the digital phantom, gantry rotation during projection acquisition, and finite detector element size. Previously published spectral models were used to model the spectrum for the given tube voltage. The integrated energy at each element of the detector was calculated using the Beer-Lambert law. The resulting angular projections were subsequently corrupted by the detector modulation transfer function (MTF), and by addition of noise according to the noise power spectrum (NPS) and signal mean-variance relationship, which were measured for different scanner settings. The simulated sinograms were reconstructed on the clinical CT system and compared to real CT images in terms of CT numbers, noise magnitude using the standard deviation, noise frequency content using the NPS, and spatial resolution using the MTF throughout the field of view (FOV). The CT numbers were validated using a multi-energy CT phantom, the noise magnitude and frequency were validated with a water phantom, and the spatial resolution was validated with a tungsten wire. These metrics were compared at multiple scanner settings, and locations in the FOV. Once validated, the simulation was simplified by reducing the level of subsampling of the focal spot area, rotation and of detector pixel size, and the changes in MTFs were analyzed. RESULTS: The average relative errors for spatial resolution within and across image slices, noise magnitude, and noise frequency content within and across slices were 3.4%, 3.3%, 4.9%, 3.9%, and 6.2%, respectively. The average absolute difference in CT numbers was 10.2 HU and the maximum was 22.5 HU. The simulation simplification showed that all subsampling can be avoided, except for angular, while the error in frequency at 10% MTF would be maximum 16.3%. CONCLUSION: The simulation of a scanner-specific CT allows for the generation of realistic CT images by combining physics-based simulations for the position-dependent effects and image-corruption methods for the shift-invariant ones. Together with the available ground truth of the digital phantom, it results in a useful tool to perform quantitative analysis of reconstruction or post-processing algorithms. Some simulation simplifications allow for reduced time and computer power requirements with minimal loss of realism.


Asunto(s)
Algoritmos , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Simulación por Computador , Fantasmas de Imagen
9.
Med Image Anal ; 92: 103044, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38043455

RESUMEN

Multi-sequence MRIs can be necessary for reliable diagnosis in clinical practice due to the complimentary information within sequences. However, redundant information exists across sequences, which interferes with mining efficient representations by learning-based models. To handle various clinical scenarios, we propose a sequence-to-sequence generation framework (Seq2Seq) for imaging-differentiation representation learning. In this study, not only do we propose arbitrary 3D/4D sequence generation within one model to generate any specified target sequence, but also we are able to rank the importance of each sequence based on a new metric estimating the difficulty of a sequence being generated. Furthermore, we also exploit the generation inability of the model to extract regions that contain unique information for each sequence. We conduct extensive experiments using three datasets including a toy dataset of 20,000 simulated subjects, a brain MRI dataset of 1251 subjects, and a breast MRI dataset of 2101 subjects, to demonstrate that (1) top-ranking sequences can be used to replace complete sequences with non-inferior performance; (2) combining MRI with our imaging-differentiation map leads to better performance in clinical tasks such as glioblastoma MGMT promoter methylation status prediction and breast cancer pathological complete response status prediction. Our code is available at https://github.com/fiy2W/mri_seq2seq.


Asunto(s)
Glioblastoma , Imagen por Resonancia Magnética , Humanos , Mama
10.
Invest Radiol ; 59(3): 230-242, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37493391

RESUMEN

ABSTRACT: Primary systemic therapy (PST) is the treatment of choice in patients with locally advanced breast cancer and is nowadays also often used in patients with early-stage breast cancer. Although imaging remains pivotal to assess response to PST accurately, the use of imaging to predict response to PST has the potential to not only better prognostication but also allow the de-escalation or omission of potentially toxic treatment with undesirable adverse effects, the accelerated implementation of new targeted therapies, and the mitigation of surgical delays in selected patients. In response to the limited ability of radiologists to predict response to PST via qualitative, subjective assessments of tumors on magnetic resonance imaging (MRI), artificial intelligence-enhanced MRI with classical machine learning, and in more recent times, deep learning, have been used with promising results to predict response, both before the start of PST and in the early stages of treatment. This review provides an overview of the current applications of artificial intelligence to MRI in assessing and predicting response to PST, and discusses the challenges and limitations of their clinical implementation.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/terapia , Neoplasias de la Mama/tratamiento farmacológico , Inteligencia Artificial , Mama/patología , Imagen por Resonancia Magnética , Aprendizaje Automático
11.
Insights Imaging ; 14(1): 213, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38051355

RESUMEN

BACKGROUND: Calcifications on mammography can be indicative of breast cancer, but the prognostic value of their appearance remains unclear. This systematic review and meta-analysis aimed to evaluate the association between mammographic calcification morphology descriptors (CMDs) and clinicopathological factors. METHODS: A comprehensive literature search in Medline via Ovid, Embase.com, and Web of Science was conducted for articles published between 2000 and January 2022 that assessed the relationship between CMDs and clinicopathological factors, excluding case reports and review articles. The risk of bias and overall quality of evidence were evaluated using the QUIPS tool and GRADE. A random-effects model was used to synthesize the extracted data. This systematic review is reported according to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA). RESULTS: Among the 4715 articles reviewed, 29 met the inclusion criteria, reporting on 17 different clinicopathological factors in relation to CMDs. Heterogeneity between studies was present and the overall risk of bias was high, primarily due to small, inadequately described study populations. Meta-analysis demonstrated significant associations between fine linear calcifications and high-grade DCIS [pooled odds ratio (pOR), 4.92; 95% confidence interval (CI), 2.64-9.17], (comedo)necrosis (pOR, 3.46; 95% CI, 1.29-9.30), (micro)invasion (pOR, 1.53; 95% CI, 1.03-2.27), and a negative association with estrogen receptor positivity (pOR, 0.33; 95% CI, 0.12-0.89). CONCLUSIONS: CMDs detected on mammography have prognostic value, but there is a high level of bias and variability between current studies. In order for CMDs to achieve clinical utility, standardization in reporting of CMDs is necessary. CRITICAL RELEVANCE STATEMENT: Mammographic calcification morphology descriptors (CMDs) have prognostic value, but in order for CMDs to achieve clinical utility, standardization in reporting of CMDs is necessary. SYSTEMATIC REVIEW REGISTRATION: CRD42022341599 KEY POINTS: • Mammographic calcifications can be indicative of breast cancer. • The prognostic value of mammographic calcifications is still unclear. • Specific mammographic calcification morphologies are related to lesion aggressiveness. • Variability between studies necessitates standardization in calcification evaluation to achieve clinical utility.

13.
Med Phys ; 50(12): 7579-7593, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37846969

RESUMEN

BACKGROUND: Cone beam computed tomography (CBCT) plays an important role in many medical fields nowadays. Unfortunately, the potential of this imaging modality is hampered by lower image quality compared to the conventional CT, and producing accurate reconstructions remains challenging. A lot of recent research has been directed towards reconstruction methods relying on deep learning, which have shown great promise for various imaging modalities. However, practical application of deep learning to CBCT reconstruction is complicated by several issues, such as exceedingly high memory costs of deep learning methods when working with fully 3D data. Additionally, deep learning methods proposed in the literature are often trained and evaluated only on data from a specific region of interest, thus raising concerns about possible lack of generalization to other regions. PURPOSE: In this work, we aim to address these limitations and propose LIRE: a learned invertible primal-dual iterative scheme for CBCT reconstruction. METHODS: LIRE is a learned invertible primal-dual iterative scheme for CBCT reconstruction, wherein we employ a U-Net architecture in each primal block and a residual convolutional neural network (CNN) architecture in each dual block. Memory requirements of the network are substantially reduced while preserving its expressive power through a combination of invertible residual primal-dual blocks and patch-wise computations inside each of the blocks during both forward and backward pass. These techniques enable us to train on data with isotropic 2 mm voxel spacing, clinically-relevant projection count and detector panel resolution on current hardware with 24 GB video random access memory (VRAM). RESULTS: Two LIRE models for small and for large field-of-view (FoV) setting were trained and validated on a set of 260 + 22 thorax CT scans and tested using a set of 142 thorax CT scans plus an out-of-distribution dataset of 79 head and neck CT scans. For both settings, our method surpasses the classical methods and the deep learning baselines on both test sets. On the thorax CT set, our method achieves peak signal-to-noise ratio (PSNR) of 33.84 ± 2.28 for the small FoV setting and 35.14 ± 2.69 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. On the head and neck CT set, our method achieves PSNR of 39.35 ± 1.75 for the small FoV setting and 41.21 ± 1.41 for the large FoV setting; U-Net baseline achieves PSNR of 33.08 ± 1.75 and 34.29 ± 2.71 respectively. Additionally, we demonstrate that LIRE can be finetuned to reconstruct high-resolution CBCT data with the same geometry but 1 mm voxel spacing and higher detector panel resolution, where it outperforms the U-Net baseline as well. CONCLUSIONS: Learned invertible primal-dual schemes with additional memory optimizations can be trained to reconstruct CBCT volumes directly from the projection data with clinically-relevant geometry and resolution. Such methods can offer better reconstruction quality and generalization compared to classical deep learning baselines.


Asunto(s)
Tomografía Computarizada de Haz Cónico , Procesamiento de Imagen Asistido por Computador , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada por Rayos X , Redes Neurales de la Computación , Relación Señal-Ruido , Fantasmas de Imagen
14.
Cell Rep Med ; 4(8): 101131, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37490915

RESUMEN

Digital health data used in diagnostics, patient care, and oncology research continue to accumulate exponentially. Most medical information, and particularly radiology results, are stored in free-text format, and the potential of these data remains untapped. In this study, a radiological repomics-driven model incorporating medical token cognition (RadioLOGIC) is proposed to extract repomics (report omics) features from unstructured electronic health records and to assess human health and predict pathological outcome via transfer learning. The average accuracy and F1-weighted score for the extraction of repomics features using RadioLOGIC are 0.934 and 0.934, respectively, and 0.906 and 0.903 for the prediction of breast imaging-reporting and data system scores. The areas under the receiver operating characteristic curve for the prediction of pathological outcome without and with transfer learning are 0.912 and 0.945, respectively. RadioLOGIC outperforms cohort models in the capability to extract features and also reveals promise for checking clinical diagnoses directly from electronic health records.


Asunto(s)
Enfermedades de la Mama , Radiología , Humanos , Registros Electrónicos de Salud , Curva ROC , Atención a la Salud
15.
Semin Radiat Oncol ; 32(4): 330-342, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36202436

RESUMEN

Automatic image registration plays an important role in many aspects of the radiation oncology workflow ranging from treatment simulation, image guided and adaptive radiotherapy, motion management and response evaluation. Traditional automatic registration algorithms are often time-consuming and further improvements in registration accuracy are required. Recently, a variety of AI-driven strategies for automatic image registrations have been developed. In this review an overview of the many applications of automatic image registration in radiation oncology is provided. Different learning strategies and network architectures have been reviewed and the current status of AI based automatic image registration algorithms in radiation oncology has been described. AI based strategies for automatic image registration typically do not outperform traditional strategies yet. Various promising approaches to further improve AI based image registrations are being explored. Therefore AI based automatic image registration may be the method of choice in the foreseeable future.


Asunto(s)
Inteligencia Artificial , Oncología por Radiación , Algoritmos , Humanos
16.
Front Neurosci ; 16: 919186, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873808

RESUMEN

Deep-learning-based brain magnetic resonance imaging (MRI) reconstruction methods have the potential to accelerate the MRI acquisition process. Nevertheless, the scientific community lacks appropriate benchmarks to assess the MRI reconstruction quality of high-resolution brain images, and evaluate how these proposed algorithms will behave in the presence of small, but expected data distribution shifts. The multi-coil MRI (MC-MRI) reconstruction challenge provides a benchmark that aims at addressing these issues, using a large dataset of high-resolution, three-dimensional, T1-weighted MRI scans. The challenge has two primary goals: (1) to compare different MRI reconstruction models on this dataset and (2) to assess the generalizability of these models to data acquired with a different number of receiver coils. In this paper, we describe the challenge experimental design and summarize the results of a set of baseline and state-of-the-art brain MRI reconstruction models. We provide relevant comparative information on the current MRI reconstruction state-of-the-art and highlight the challenges of obtaining generalizable models that are required prior to broader clinical adoption. The MC-MRI benchmark data, evaluation code, and current challenge leaderboard are publicly available. They provide an objective performance assessment for future developments in the field of brain MRI reconstruction.

17.
Diagnostics (Basel) ; 12(7)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35885594

RESUMEN

Automatic breast and fibro-glandular tissue (FGT) segmentation in breast MRI allows for the efficient and accurate calculation of breast density. The U-Net architecture, either 2D or 3D, has already been shown to be effective at addressing the segmentation problem in breast MRI. However, the lack of publicly available datasets for this task has forced several authors to rely on internal datasets composed of either acquisitions without fat suppression (WOFS) or with fat suppression (FS), limiting the generalization of the approach. To solve this problem, we propose a data-centric approach, efficiently using the data available. By collecting a dataset of T1-weighted breast MRI acquisitions acquired with the use of the Dixon method, we train a network on both T1 WOFS and FS acquisitions while utilizing the same ground truth segmentation. Using the "plug-and-play" framework nnUNet, we achieve, on our internal test set, a Dice Similarity Coefficient (DSC) of 0.96 and 0.91 for WOFS breast and FGT segmentation and 0.95 and 0.86 for FS breast and FGT segmentation, respectively. On an external, publicly available dataset, a panel of breast radiologists rated the quality of our automatic segmentation with an average of 3.73 on a four-point scale, with an average percentage agreement of 67.5%.

18.
Med Image Anal ; 79: 102464, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35596966

RESUMEN

We propose a Deep learning-based weak label learning method for analyzing whole slide images (WSIs) of Hematoxylin and Eosin (H&E) stained tumor tissue not requiring pixel-level or tile-level annotations using Self-supervised pre-training and heterogeneity-aware deep Multiple Instance LEarning (DeepSMILE). We apply DeepSMILE to the task of Homologous recombination deficiency (HRD) and microsatellite instability (MSI) prediction. We utilize contrastive self-supervised learning to pre-train a feature extractor on histopathology tiles of cancer tissue. Additionally, we use variability-aware deep multiple instance learning to learn the tile feature aggregation function while modeling tumor heterogeneity. For MSI prediction in a tumor-annotated and color normalized subset of TCGA-CRC (n=360 patients), contrastive self-supervised learning improves the tile supervision baseline from 0.77 to 0.87 AUROC, on par with our proposed DeepSMILE method. On TCGA-BC (n=1041 patients) without any manual annotations, DeepSMILE improves HRD classification performance from 0.77 to 0.81 AUROC compared to tile supervision with either a self-supervised or ImageNet pre-trained feature extractor. Our proposed methods reach the baseline performance using only 40% of the labeled data on both datasets. These improvements suggest we can use standard self-supervised learning techniques combined with multiple instance learning in the histopathology domain to improve genomic label classification performance with fewer labeled data.


Asunto(s)
Neoplasias de la Mama , Neoplasias Colorrectales , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Femenino , Humanos , Inestabilidad de Microsatélites , Coloración y Etiquetado
19.
Semin Nucl Med ; 52(5): 584-596, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35339259

RESUMEN

This review gives an overview of the current state of deep learning research in breast cancer imaging. Breast imaging plays a major role in detecting breast cancer at an earlier stage, as well as monitoring and evaluating breast cancer during treatment. The most commonly used modalities for breast imaging are digital mammography, digital breast tomosynthesis, ultrasound and magnetic resonance imaging. Nuclear medicine imaging techniques are used for detection and classification of axillary lymph nodes and distant staging in breast cancer imaging. All of these techniques are currently digitized, enabling the possibility to implement deep learning (DL), a subset of Artificial intelligence, in breast imaging. DL is nowadays embedded in a plethora of different tasks, such as lesion classification and segmentation, image reconstruction and generation, cancer risk prediction, and prediction and assessment of therapy response. Studies show similar and even better performances of DL algorithms compared to radiologists, although it is clear that large trials are needed, especially for ultrasound and magnetic resonance imaging, to exactly determine the added value of DL in breast cancer imaging. Studies on DL in nuclear medicine techniques are only sparsely available and further research is mandatory. Legal and ethical issues need to be considered before the role of DL can expand to its full potential in clinical breast care practice.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Inteligencia Artificial , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Femenino , Humanos , Mamografía/métodos
20.
Radiology ; 303(1): 54-62, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981975

RESUMEN

Background Improving diagnosis of ductal carcinoma in situ (DCIS) before surgery is important in choosing optimal patient management strategies. However, patients may harbor occult invasive disease not detected until definitive surgery. Purpose To assess the performance and clinical utility of mammographic radiomic features in the prediction of occult invasive cancer among women diagnosed with DCIS on the basis of core biopsy findings. Materials and Methods In this Health Insurance Portability and Accountability Act-compliant retrospective study, digital magnification mammographic images were collected from women who underwent breast core-needle biopsy for calcifications that was performed at a single institution between September 2008 and April 2017 and yielded a diagnosis of DCIS. The database query was directed at asymptomatic women with calcifications without a mass, architectural distortion, asymmetric density, or palpable disease. Logistic regression with regularization was used. Differences across training and internal test set by upstaging rate, age, lesion size, and estrogen and progesterone receptor status were assessed by using the Kruskal-Wallis or χ2 test. Results The study consisted of 700 women with DCIS (age range, 40-89 years; mean age, 59 years ± 10 [standard deviation]), including 114 with lesions (16.3%) upstaged to invasive cancer at subsequent surgery. The sample was split randomly into 400 women for the training set and 300 for the testing set (mean ages: training set, 59 years ± 10; test set, 59 years ± 10; P = .85). A total of 109 radiomic and four clinical features were extracted. The best model on the test set by using all radiomic and clinical features helped predict upstaging with an area under the receiver operating characteristic curve of 0.71 (95% CI: 0.62, 0.79). For a fixed high sensitivity (90%), the model yielded a specificity of 22%, a negative predictive value of 92%, and an odds ratio of 2.4 (95% CI: 1.8, 3.2). High specificity (90%) corresponded to a sensitivity of 37%, positive predictive value of 41%, and odds ratio of 5.0 (95% CI: 2.8, 9.0). Conclusion Machine learning models that use radiomic features applied to mammographic calcifications may help predict upstaging of ductal carcinoma in situ, which can refine clinical decision making and treatment planning. © RSNA, 2022.


Asunto(s)
Neoplasias de la Mama , Calcinosis , Carcinoma in Situ , Carcinoma Ductal de Mama , Carcinoma Intraductal no Infiltrante , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/diagnóstico por imagen , Carcinoma Ductal de Mama/patología , Carcinoma Intraductal no Infiltrante/diagnóstico por imagen , Carcinoma Intraductal no Infiltrante/patología , Femenino , Humanos , Masculino , Mamografía , Persona de Mediana Edad , Estudios Retrospectivos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...