Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
IEEE Int Conf Rehabil Robot ; 2022: 1-5, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36176141

RESUMEN

This study describes an interdisciplinary approach to develop a 5 degrees of freedom assistive upper limb exoskeleton (ULE) for users with severe to complete functional tetraplegia. Four different application levels were identified for the ULE ranging from basic technical application to interaction with users, interaction with caregivers and interaction with the society, each level posing requirements for the design and functionality of the ULE. These requirements were addressed through an interdisciplinary collaboration involving users, clinicians and researchers within social sciences and humanities, mechanical engineering, control engineering media technology and biomedical engineering. The results showed that the developed ULE, the EXOTIC, had a high level of usability, safety and adoptability. Further, the results showed that several topics are important to explicitly address in relation to the facilitation of interdisciplinary collaboration including, defining a common language, a joint visualization of the end goal and a physical frame for the collaboration, such as a shared laboratory. The study underlined the importance of interdisciplinarity and we believe that future collaboration amongst interdisciplinary researchers and centres, also at an international level, can strongly facilitate the usefulness and adoption of assistive exoskeletons and similar technologies.


Asunto(s)
Personas con Discapacidad , Dispositivo Exoesqueleto , Humanos , Motivación , Extremidad Superior
2.
Sensors (Basel) ; 22(18)2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36146260

RESUMEN

This paper presents the EXOTIC- a novel assistive upper limb exoskeleton for individuals with complete functional tetraplegia that provides an unprecedented level of versatility and control. The current literature on exoskeletons mainly focuses on the basic technical aspects of exoskeleton design and control while the context in which these exoskeletons should function is less or not prioritized even though it poses important technical requirements. We considered all sources of design requirements, from the basic technical functions to the real-world practical application. The EXOTIC features: (1) a compact, safe, wheelchair-mountable, easy to don and doff exoskeleton capable of facilitating multiple highly desired activities of daily living for individuals with tetraplegia; (2) a semi-automated computer vision guidance system that can be enabled by the user when relevant; (3) a tongue control interface allowing for full, volitional, and continuous control over all possible motions of the exoskeleton. The EXOTIC was tested on ten able-bodied individuals and three users with tetraplegia caused by spinal cord injury. During the tests the EXOTIC succeeded in fully assisting tasks such as drinking and picking up snacks, even for users with complete functional tetraplegia and the need for a ventilator. The users confirmed the usability of the EXOTIC.


Asunto(s)
Dispositivo Exoesqueleto , Actividades Cotidianas , Humanos , Poder Psicológico , Cuadriplejía , Lengua , Extremidad Superior
3.
J Biomech ; 139: 111137, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35594818

RESUMEN

This study addresses the feasibility of underactuated arm exoskeletons as an alternative solution to the often bulky and heavy exoskeletons which actuate the shoulder with 3 DoF. Specifically, the study investigates how the wrist and elbow joint adapts their kinematics when the shoulder abduction is constrained. Ten healthy participants conducted three different grasping activities of daily living, during natural motion and during constrained shoulder abduction at two fixed angles: the resting position angle and at an angle of 10 ° abduction from the resting position. Motion capture data was collected and used as input for a musculoskeletal computer model adapted to this study. Statistical parametric mapping tools were employed to analyze the joint angles estimated by the model. The results show significant differences within the joint angles when the shoulder abduction is constrained. The wrist flexion angle deviated up to 13.6 ° and the elbow pronation angle decreased by 8.7 ° on average throughout the movement compared to the natural motion during restricted shoulder abduction motion. Thus, the shoulder could be underactuated and the participants could still accomplish the activities of daily living with changes in the wrist and elbow joint kinematic angles.


Asunto(s)
Articulación del Codo , Dispositivo Exoesqueleto , Articulación del Hombro , Actividades Cotidianas , Brazo , Fenómenos Biomecánicos , Codo , Humanos , Movimiento , Rango del Movimiento Articular , Muñeca
4.
Front Neurosci ; 15: 739279, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34975367

RESUMEN

Spinal cord injury can leave the affected individual severely disabled with a low level of independence and quality of life. Assistive upper-limb exoskeletons are one of the solutions that can enable an individual with tetraplegia (paralysis in both arms and legs) to perform simple activities of daily living by mobilizing the arm. Providing an efficient user interface that can provide full continuous control of such a device-safely and intuitively-with multiple degrees of freedom (DOFs) still remains a challenge. In this study, a control interface for an assistive upper-limb exoskeleton with five DOFs based on an intraoral tongue-computer interface (ITCI) for individuals with tetraplegia was proposed. Furthermore, we evaluated eyes-free use of the ITCI for the first time and compared two tongue-operated control methods, one based on tongue gestures and the other based on dynamic virtual buttons and a joystick-like control. Ten able-bodied participants tongue controlled the exoskeleton for a drinking task with and without visual feedback on a screen in three experimental sessions. As a baseline, the participants performed the drinking task with a standard gamepad. The results showed that it was possible to control the exoskeleton with the tongue even without visual feedback and to perform the drinking task at 65.1% of the speed of the gamepad. In a clinical case study, an individual with tetraplegia further succeeded to fully control the exoskeleton and perform the drinking task only 5.6% slower than the able-bodied group. This study demonstrated the first single-modal control interface that can enable individuals with complete tetraplegia to fully and continuously control a five-DOF upper limb exoskeleton and perform a drinking task after only 2 h of training. The interface was used both with and without visual feedback.

5.
J Pain ; 21(11-12): 1257-1269, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32574786

RESUMEN

Phantom limb pain (PLP) may be relieved using a visual representation of an intact limb. However, patients with distorted (telescoped) phantoms seem unable to associate with visualizations of intact limbs. A virtual arm visualization was matched to the individual's phantom perception and controlled in an augmented reality (AR) intervention. Seven PLP participants with telescoped phantoms performed 8 supervised home-based AR-training sessions (45 minutes each) within 2 weeks. The virtual arm was superimposed in AR onto their residual limb and controlled using electromyography from the residual limb. AR-training sessions included 3 AR tasks aimed at reengaging the neural circuits related to the lost limb. Agency (Rubber hand illusion questionnaire) and telescoping (proprioceptive drift and felt telescoping) were monitored after individual training sessions. fMRI during lip pursing was assessed before and after intervention. Pain rating index scores were reduced by 52% (mean change = -1.884, P = .032, d = 1.135). Numerical rating scale scores of PLP severity (0-6) in patients benefitting from the intervention were reduced by 41% (mean change = .93 P = .022, d = 1.334). The lip pursing task illustrated decreased cortical activity in the primary somatosensory cortex, which correlated to the reduced numerical rating scale scores of PLP severity. PERSPECTIVE: Two weeks of novel AR interventions in patients with telescoped phantoms demonstrated reduced PLP and reversal of cortical reorganization. This research highlights the potential of individualized AR interventions for PLP and indicate the importance of agency in this type of treatments.


Asunto(s)
Amputados/rehabilitación , Realidad Aumentada , Miembro Fantasma/terapia , Medicina de Precisión/métodos , Prueba de Estudio Conceptual , Corteza Somatosensorial/diagnóstico por imagen , Adulto , Anciano , Amputados/psicología , Retroalimentación Sensorial/fisiología , Femenino , Estudios de Seguimiento , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Plasticidad Neuronal/fisiología , Dimensión del Dolor/métodos , Dimensión del Dolor/psicología , Miembro Fantasma/diagnóstico , Miembro Fantasma/psicología , Medicina de Precisión/psicología , Distribución Aleatoria , Corteza Somatosensorial/fisiología
6.
IEEE Int Conf Rehabil Robot ; 2019: 157-162, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31374623

RESUMEN

Individuals suffering from quadriplegia can achieve increased independence by using an assistive robotic manipulator (ARM). However, due to their disability, the interfaces that can be used to operate such devices become limited. A versatile intraoral tongue control interface (ITCI) has previously been develop for this user group, as the tongue is usually spared from disability. A previous study has shown that the ITCI can provide direct and continuous control of 6-7 degrees of freedom (DoF) of an ARM, due to a high number of provided inputs (18). In the present pilot study we investigated whether semi-automation might further improve the efficiency of the ITCI, when controlling an ARM. This was achieved by adding a camera to the end effector of the ARM and using computer vision algorithms to guide the ARM to grasp a target object. Three ITCI and one joystick control scheme were tested and compared: 1) manual Cartesian control with a base frame reference point, 2) manual Cartesian control with an end effector reference point 3) manual Cartesian control with an end effector reference point and an autonomous grasp function 4) regular JACO2 joystick control. The results indicated that end effector control was superior to the base frame control in total task time, number of commands issued and path efficiency. The addition of the automatic grasp function did not improve the performance, but resulted in fewer collisions/displacements of the target object when grasping.


Asunto(s)
Cuadriplejía/fisiopatología , Robótica , Dispositivos de Autoayuda , Lengua/fisiología , Adulto , Algoritmos , Humanos , Masculino , Análisis y Desempeño de Tareas , Interfaz Usuario-Computador
7.
Behav Brain Res ; 347: 263-271, 2018 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-29551734

RESUMEN

The purpose of the present study was to assess changes in body perception when visual feedback was removed from the hand and arm with the purpose of resembling the visual deprivation arising from amputation. The illusion was created by removing the visual feedback from the participants' own left forearm using a mixed reality (MR) and green screen environment. Thirty healthy persons (15 female) participated in the study. Each subject experienced two MR conditions, one with and one without visual feedback from the left hand, and a baseline condition with normal vision of the limb (no MR). Body perception was assessed using proprioceptive drift, questionnaires on body perception, and thermal sensitivity measures (cold, warm, heat pain and cold pain detection thresholds). The proprioceptive drift showed a significant shift of the tip of the index finger (p<0.001) towards the elbow in the illusion condition (mean drift: -3.71 cm). Self-report showed a significant decrease in ownership (p<0.001), shift in perceptual distortions, (e.g. "It feels as if my lower arm has become shorter") (p=0.025), and changes in sensations of the hand (tingling, tickling) (p=0.025). A significant decrease was also observed in cold detection threshold (p<0.001), i.e. the detection threshold was cooler than for the control conditions. The proprioceptive drift together with the self-reported questionnaire showed that the participants felt a proximal retraction of their limb, resembling the telescoping experienced by phantom limb patients. The study highlights the influence of missing visual feedback and its possible contribution to phantom limb phenomena.


Asunto(s)
Imagen Corporal , Ilusiones , Realidad Virtual , Percepción Visual , Adulto , Retroalimentación Psicológica , Femenino , Dedos , Antebrazo , Humanos , Masculino , Miembro Fantasma/psicología , Propiocepción , Autoinforme , Umbral Sensorial , Sensación Térmica , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...