Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Gut Pathog ; 16(1): 27, 2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38735967

RESUMEN

BACKGROUND: Enhancing our understanding of the underlying influences of medical interventions on the microbiome, resistome and mycobiome of preterm born infants holds significant potential for advancing infection prevention and treatment strategies. We conducted a prospective quasi-intervention study to better understand how antibiotics, and probiotics, and other medical factors influence the gut development of preterm infants. A controlled neonatal mice model was conducted in parallel, designed to closely reflect and predict exposures. Preterm infants and neonatal mice were stratified into four groups: antibiotics only, probiotics only, antibiotics followed by probiotics, and none of these interventions. Stool samples from both preterm infants and neonatal mice were collected at varying time points and analyzed by 16 S rRNA amplicon sequencing, ITS amplicon sequencing and whole genome shotgun sequencing. RESULTS: The human infant microbiomes showed an unexpectedly high degree of heterogeneity. Little impact from medical exposure (antibiotics/probiotics) was observed on the strain patterns, however, Bifidobacterium bifidum was found more abundant after exposure to probiotics, regardless of prior antibiotic administration. Twenty-seven antibiotic resistant genes were identified in the resistome. High intra-variability was evident within the different treatment groups. Lastly, we found significant effects of antibiotics and probiotics on the mycobiome but not on the microbiome and resistome of preterm infants. CONCLUSIONS: Although our analyses showed transient effects, these results provide positive motivation to continue the research on the effects of medical interventions on the microbiome, resistome and mycobiome of preterm infants.

2.
Sci Rep ; 14(1): 5768, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38459123

RESUMEN

The SARS-CoV-2 pandemic has highlighted the need to better define in-hospital transmissions, a need that extends to all other common infectious diseases encountered in clinical settings. To evaluate how whole viral genome sequencing can contribute to deciphering nosocomial SARS-CoV-2 transmission 926 SARS-CoV-2 viral genomes from 622 staff members and patients were collected between February 2020 and January 2021 at a university hospital in Munich, Germany, and analysed along with the place of work, duration of hospital stay, and ward transfers. Bioinformatically defined transmission clusters inferred from viral genome sequencing were compared to those inferred from interview-based contact tracing. An additional dataset collected at the same time at another university hospital in the same city was used to account for multiple independent introductions. Clustering analysis of 619 viral genomes generated 19 clusters ranging from 3 to 31 individuals. Sequencing-based transmission clusters showed little overlap with those based on contact tracing data. The viral genomes were significantly more closely related to each other than comparable genomes collected simultaneously at other hospitals in the same city (n = 829), suggesting nosocomial transmission. Longitudinal sampling from individual patients suggested possible cross-infection events during the hospital stay in 19.2% of individuals (14 of 73 individuals). Clustering analysis of SARS-CoV-2 whole genome sequences can reveal cryptic transmission events missed by classical, interview-based contact tracing, helping to decipher in-hospital transmissions. These results, in line with other studies, advocate for viral genome sequencing as a pathogen transmission surveillance tool in hospitals.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/genética , Genoma Viral/genética , Infección Hospitalaria/epidemiología , Infección Hospitalaria/genética , Hospitales Universitarios
3.
J Clin Microbiol ; 62(3): e0111123, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38407068

RESUMEN

Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infections causing significant morbidity and mortality among children and the elderly; two RSV vaccines and a monoclonal antibody have recently been approved. Thus, there is an increasing need for a detailed and continuous genomic surveillance of RSV circulating in resource-rich and resource-limited settings worldwide. However, robust, cost-effective methods for whole genome sequencing of RSV from clinical samples that are amenable to high-throughput are still scarce. We developed Next-RSV-SEQ, an experimental and computational pipeline to generate whole genome sequences of historic and current RSV genotypes by in-solution hybridization capture-based next generation sequencing. We optimized this workflow by automating library preparation and pooling libraries prior to enrichment in order to reduce hands-on time and cost, thereby augmenting scalability. Next-RSV-SEQ yielded near-complete to complete genome sequences for 98% of specimens with Cp values ≤31, at median on-target reads >93%, and mean coverage depths between ~1,000 and >5,000, depending on viral load. Whole genomes were successfully recovered from samples with viral loads as low as 230 copies per microliter RNA. We demonstrate that the method can be expanded to other respiratory viruses like parainfluenza virus and human metapneumovirus. Next-RSV-SEQ produces high-quality RSV genomes directly from culture isolates and, more importantly, clinical specimens of all genotypes in circulation. It is cost-efficient, scalable, and can be extended to other respiratory viruses, thereby opening new perspectives for a future effective and broad genomic surveillance of respiratory viruses. IMPORTANCE: Respiratory syncytial virus (RSV) is a leading cause of severe acute respiratory tract infections in children and the elderly, and its prevention has become an increasing priority. Recently, vaccines and a long-acting monoclonal antibody to protect effectively against severe disease have been approved for the first time. Hence, there is an urgent need for genomic surveillance of RSV at the global scale to monitor virus evolution, especially with an eye toward immune evasion. However, robust, cost-effective methods for RSV whole genome sequencing that are suitable for high-throughput of clinical samples are currently scarce. Therefore, we have developed Next-RSV-SEQ, an experimental and computational pipeline that produces reliably high-quality RSV genomes directly from clinical specimens and isolates.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Infecciones del Sistema Respiratorio , Niño , Humanos , Anciano , Virus Sincitial Respiratorio Humano/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación Completa del Genoma , Anticuerpos Monoclonales
4.
Int J Med Microbiol ; 314: 151598, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38237287

RESUMEN

Respiratory viral infections may have different impacts ranging from infection without symptoms to severe disease or even death though the reasons are not well characterized. A patient (age group 5-15 years) displaying symptoms of hemolytic uremic syndrome died one day after hospitalization. qPCR, next generation sequencing, virus isolation, antigenic characterization, resistance analysis was performed and virus replication kinetics in well-differentiated airway cells were determined. Autopsy revealed hemorrhagic pneumonia as major pathological manifestation. Lung samples harbored a large population of A(H1N1)pdm09 viruses with the polymorphism H456H/Y in PB1 polymerase. The H456H/Y viruses replicated much faster to high viral titers than upper respiratory tract viruses in vitro. H456H/Y-infected air-liquid interface cultures of differentiated airway epithelial cells did reflect a more pronounced loss of ciliated cells. A different pattern of virus quasispecies was found in the upper airway samples where substitution S263S/F (HA1) was observed. The data support the notion that viral quasispecies had evolved locally in the lung to support high replicative fitness. This change may have initiated further pathogenic processes leading to rapid dissemination of inflammatory mediators followed by development of hemorrhagic lung lesions and fatal outcome.


Asunto(s)
Síndrome Hemolítico-Urémico , Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Humanos , Preescolar , Niño , Adolescente , Células Epiteliales , Pulmón , Gripe Humana/epidemiología
5.
Front Microbiol ; 14: 1253362, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094626

RESUMEN

For successful elucidation of a food-borne infection chain, the availability of high-quality sequencing data from suspected microbial contaminants is a prerequisite. Commonly, those investigations are a joint effort undertaken by different laboratories and institutes. To analyze the extent of variability introduced by differing wet-lab procedures on the quality of the sequence data we conducted an interlaboratory study, involving four bacterial pathogens, which account for the majority of food-related bacterial infections: Campylobacter spp., Shiga toxin-producing Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The participants, ranging from German federal research institutes, federal state laboratories to universities and companies, were asked to follow their routine in-house protocols for short-read sequencing of 10 cultures and one isolated bacterial DNA per species. Sequence and assembly quality were then analyzed centrally. Variations within isolate samples were detected with SNP and cgMLST calling. Overall, we found that the quality of Illumina raw sequence data was high with little overall variability, with one exception, attributed to a specific library preparation kit. The variability of Ion Torrent data was higher, independent of the investigated species. For cgMLST and SNP analysis results, we found that technological sequencing artefacts could be reduced by the use of filters, and that SNP analysis was more suited than cgMLST to compare data of different contributors. Regarding the four species, a minority of Campylobacter isolate data showed the in comparison highest divergence with regard to sequence type and cgMLST analysis. We additionally compared the assembler SPAdes and SKESA for their performance on the Illumina data sets of the different species and library preparation methods and found overall similar assembly quality metrics and cgMLST statistics.

6.
Virus Genes ; 59(4): 532-540, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37256469

RESUMEN

Poxviruses are known to evolve slower than RNA viruses with only 1-2 mutations/genome/year. Rather than single mutations, rearrangements such as gene gain and loss, which have been discussed as a possible driver for host adaption, were described in poxviruses. In 2022 and 2023 the world is being challenged by the largest global outbreak so far of Mpox virus, and the virus seems to have established itself in the human community for an extended period of time. Here, we report five Mpox virus genomes from Germany with extensive gene duplication and loss, leading to the expansion of the ITR regions from 6400 to up to 24,600 bp. We describe duplications of up to 18,200 bp to the opposed genome end, and deletions at the site of insertion of up to 16,900 bp. Deletions and duplications of genes with functions of supposed immune modulation, virulence and host adaption as B19R, B21R, B22R and D10L are described. In summary, we highlight the need for monitoring rearrangements of the Mpox virus genome rather than for monitoring single mutations only.


Asunto(s)
Mpox , Poxviridae , Humanos , Duplicación de Gen , Mpox/genética , Genoma Viral/genética , Poxviridae/genética , Mutación
7.
Infection ; 51(4): 805-811, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37129842

RESUMEN

The SARS-CoV-2 pandemic has highlighted the importance of viable infection surveillance and the relevant infrastructure. From a German perspective, an integral part of this infrastructure, genomic pathogen sequencing, was at best fragmentary and stretched to its limits due to the lack or inefficient use of equipment, human resources, data management and coordination. The experience in other countries has shown that the rate of sequenced positive samples and linkage of genomic and epidemiological data (person, place, time) represent important factors for a successful application of genomic pathogen surveillance. Planning, establishing and consistently supporting adequate structures for genomic pathogen surveillance will be crucial to identify and combat future pandemics as well as other challenges in infectious diseases such as multi-drug resistant bacteria and healthcare-associated infections. Therefore, the authors propose a multifaceted and coordinated process for the definition of procedural, legal and technical standards for comprehensive genomic pathogen surveillance in Germany, covering the areas of genomic sequencing, data collection and data linkage, as well as target pathogens. A comparative analysis of the structures established in Germany and in other countries is applied. This proposal aims to better tackle epi- and pandemics to come and take action from the "lessons learned" from the SARS-CoV-2 pandemic.


Asunto(s)
COVID-19 , Infección Hospitalaria , Humanos , Pandemias/prevención & control , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , Genómica
8.
Artículo en Alemán | MEDLINE | ID: mdl-36811648

RESUMEN

The SARS-CoV­2 pandemic has shown a deficit of essential epidemiological infrastructure, especially with regard to genomic pathogen surveillance in Germany. In order to prepare for future pandemics, the authors consider it urgently necessary to remedy this existing deficit by establishing an efficient infrastructure for genomic pathogen surveillance. Such a network can build on structures, processes, and interactions that have already been initiated regionally and further optimize them. It will be able to respond to current and future challenges with a high degree of adaptability.The aim of this paper is to address the urgency and to outline proposed measures for establishing an efficient, adaptable, and responsive genomic pathogen surveillance network, taking into account external framework conditions and internal standards. The proposed measures are based on global and country-specific best practices and strategy papers. Specific next steps to achieve an integrated genomic pathogen surveillance include linking epidemiological data with pathogen genomic data; sharing and coordinating existing resources; making surveillance data available to relevant decision-makers, the public health service, and the scientific community; and engaging all stakeholders. The establishment of a genomic pathogen surveillance network is essential for the continuous, stable, active surveillance of the infection situation in Germany, both during pandemic phases and beyond.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , COVID-19/prevención & control , Pandemias/prevención & control , Alemania/epidemiología , Genómica
9.
Liver Int ; 43(4): 794-804, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36617681

RESUMEN

BACKGROUND AND AIMS: Hepatitis E virus is a major cause of acute hepatitis worldwide and can progress to chronicity in immunocompromised individuals. Various virus-host recombination events have been reported in the hypervariable region of the hepatitis E virus genome, but the patterns of assembly and selection remain unclear. METHODS: To gain further insight into viral evolution, we assessed the presence of low abundance variants in 16 samples from individuals with acute or chronic infection using a targeted next-generation sequencing approach. RESULTS: In seven samples, different variants with insertions and/or deletions were identified. Among them, eight insertions originating either from human genes or from the hepatitis E virus genome. Five different deletions could be identified. The amino acid composition of sequences with insertions showed a higher frequency of lysine and a lower abundance of proline, and additionally acetylation and ubiquitination sites were more frequent than in hepatitis E virus wild-type sequences. CONCLUSIONS: These findings suggest that the nucleotide composition of insertions and sites for post-translational modification may contribute to recombination events. Although the impact of low-level hepatitis E virus variants is uncertain, our results highlight the importance of a highly sensitive next-generation sequencing approach to capture the full diversity of hypervariable region.


Asunto(s)
Virus de la Hepatitis E , Humanos , Virus de la Hepatitis E/genética , Infección Persistente , Genoma Viral/genética
10.
Front Microbiol ; 13: 969961, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36504815

RESUMEN

Previous research on methicillin susceptible Staphylococcus aureus (MSSA) belonging to livestock-associated (LA-) sequence type (ST) 398, isolated from pigs and their local surroundings, indicated that differences between these MSSA and their methicillin resistant predecessors (MRSA) are often limited to the absence of the staphylococcal cassette chromosome mec (SCCmec) and few single nucleotide polymorphisms. So far, our understanding on how LA-MRSA endure the environmental conditions associated with pig-farming as well as the putative impact of this particular environment on the mobilisation of SCCmec elements is limited. Thus, we performed in-depth genomic and transcriptomic analyses using the LA-MRSA ST398 strain IMT38951 and its methicillin susceptible descendant. We identified a mosaic-structured SCCmec region including a putative replicative SCCmecVc which is absent from the MSSA chromosome through homologous recombination. Based on our data, such events occur between short repetitive sequences identified within and adjacent to two distinct alleles of the large cassette recombinase genes C (ccrC). We further evaluated the global transcriptomic response of MRSA ST398 to particular pig-farm associated conditions, i.e., contact with host proteins (porcine serum) and a high ammonia concentration. Differential expression of global regulators involved in stress response control were identified, i.e., ammonia-induced alternative sigma factor B-depending activation of genes for the alkaline shock protein 23, the heat shock response and the accessory gene regulator (agr)-controlled transcription of virulence factors. Exposure to serum transiently induced the transcription of distinct virulence factor encoding genes. Transcription of genes reported for mediating the loss of methicillin resistance, especially ccrC, was not significantly different compared to the unchallenged controls. We concluded that, from an evolutionary perspective, bacteria may save energy by incidentally dismissing a fully replicative SCCmec element in contrast to the induction of ccr genes on a population scale. Since the genomic SCCmec integration site is a hot-spot of recombination, occasional losses of elements of 16 kb size may restore capacities for the uptake of foreign genetic material. Subsequent spread of resistance, on the other hand, might depend on the autonomous replication machinery of the deleted SCCmec elements that probably enhance chances for reintegration of SCCmec into susceptible genomes by mere multiplication.

11.
Genome Res ; 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114002

RESUMEN

The Gram-positive bacterium Listeria monocytogenes occurs widespread in the environment and infects humans when ingested along with contaminated food. Such infections are particularly dangerous for risk group patients, for whom they represent a life-threatening disease. To invent novel strategies to control contamination and disease, it is important to identify those cellular processes that maintain pathogen growth inside and outside the host. Here, we have applied transposon insertion sequencing (Tn-Seq) to L. monocytogenes for the identification of such processes on a genome-wide scale. Our approach identified 394 open reading frames that are required for growth under standard laboratory conditions and 42 further genes, which become necessary during intracellular growth in macrophages. Most of these genes encode components of the translation machinery and act in chromosome-related processes, cell division, and biosynthesis of the cellular envelope. Several cofactor biosynthesis pathways and 29 genes with unknown functions are also required for growth, suggesting novel options for the development of antilisterial drugs. Among the genes specifically required during intracellular growth are known virulence factors, genes compensating intracellular auxotrophies, and several cell division genes. Our experiments also highlight the importance of PASTA kinase signaling for general viability and of glycine metabolism and chromosome segregation for efficient intracellular growth of L. monocytogenes.

12.
J Am Soc Nephrol ; 33(12): 2259-2275, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35985814

RESUMEN

BACKGROUND: CKD is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. METHODS: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (with normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis [HD], or kidney transplantation) with a mean±SD age of 10.6±3.8 years. RESULTS: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from patients on HD activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classic to nonclassic and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in patients on HD. CONCLUSIONS: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the proinflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.


Asunto(s)
Enfermedades Cardiovasculares , Microbioma Gastrointestinal , Insuficiencia Renal Crónica , Humanos , Disbiosis/microbiología , Microbioma Gastrointestinal/fisiología , Inflamación , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/metabolismo , Factor de Necrosis Tumoral alfa , Niño , Adolescente
13.
Clin Infect Dis ; 75(Suppl 1): S110-S120, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35749674

RESUMEN

BACKGROUND: Comprehensive pathogen genomic surveillance represents a powerful tool to complement and advance precision vaccinology. The emergence of the Alpha variant in December 2020 and the resulting efforts to track the spread of this and other severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern led to an expansion of genomic sequencing activities in Germany. METHODS: At Robert Koch Institute (RKI), the German National Institute of Public Health, we established the Integrated Molecular Surveillance for SARS-CoV-2 (IMS-SC2) network to perform SARS-CoV-2 genomic surveillance at the national scale, SARS-CoV-2-positive samples from laboratories distributed across Germany regularly undergo whole-genome sequencing at RKI. RESULTS: We report analyses of 3623 SARS-CoV-2 genomes collected between December 2020 and December 2021, of which 3282 were randomly sampled. All variants of concern were identified in the sequenced sample set, at ratios equivalent to those in the 100-fold larger German GISAID sequence dataset from the same time period. Phylogenetic analysis confirmed variant assignments. Multiple mutations of concern emerged during the observation period. To model vaccine effectiveness in vitro, we employed authentic-virus neutralization assays, confirming that both the Beta and Zeta variants are capable of immune evasion. The IMS-SC2 sequence dataset facilitated an estimate of the SARS-CoV-2 incidence based on genetic evolution rates. Together with modeled vaccine efficacies, Delta-specific incidence estimation indicated that the German vaccination campaign contributed substantially to a deceleration of the nascent German Delta wave. CONCLUSIONS: SARS-CoV-2 molecular and genomic surveillance may inform public health policies including vaccination strategies and enable a proactive approach to controlling coronavirus disease 2019 spread as the virus evolves.


Asunto(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/prevención & control , Genoma Viral , Genómica , Humanos , Filogenia , SARS-CoV-2/genética , Vacunología
14.
Open Forum Infect Dis ; 9(5): ofac114, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35434175

RESUMEN

Background: In September 2018, Burkholderia cepacia complex (BCC) infections in 3 patients associated with exposure to a mouthwash solution (MWS) were reported to the Robert Koch Institute (RKI). As the product was still on the market and the scale of the outbreak was unclear, a nation-wide investigation was initiated. Methods: We aimed to investigate BCC infections/colonizations associated with MWS. Hospitals, laboratories, and public health services were informed that BCC isolates should be sent to the RKI. These isolates were typed by pulsed-field gel electrophoresis (PFGE) and whole-genome sequencing (WGS) including development of an ad hoc core genome MLST (cgMLST) scheme. Results: In total, 36 patients from 6 hospitals met the case definition, the last patient in November 2018. Twenty-nine isolates from 26 of these patients were available for typing. WGS analysis revealed 2 distinct cgMLST clusters. Cluster 1 (Burkholderia arboris) contained isolates from patients and MWS obtained from 4 hospitals and isolates provided by the manufacturer. Patient and MWS isolates from another hospital were assigned to cluster 2 (B. cepacia). Conclusions: The combined clinical, epidemiological, and microbiological investigation, including whole-genome analysis, allowed for uncovering a supraregional BCC outbreak in health care settings. Strains of B. arboris and B. cepacia were identified as contaminating species of MWS bottles and subsequent colonization and putative infection of patients in several hospitals. Despite a recall of the product by the manufacturer in August 2018, the outbreak lasted until December 2018. Reporting of contaminated medical products and recalls should be optimized to protect patients.

15.
Microbiome ; 10(1): 57, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35379337

RESUMEN

BACKGROUND: Caloric restriction can delay the development of metabolic diseases ranging from insulin resistance to type 2 diabetes and is linked to both changes in the composition and metabolic function of the gut microbiota and immunological consequences. However, the interaction between dietary intake, the microbiome, and the immune system remains poorly described. RESULTS: We transplanted the gut microbiota from an obese female before (AdLib) and after (CalRes) an 8-week very-low-calorie diet (800 kcal/day) into germ-free mice. We used 16S rRNA sequencing to evaluate taxa with differential abundance between the AdLib- and CalRes-microbiota recipients and single-cell multidimensional mass cytometry to define immune signatures in murine colon, liver, and spleen. Recipients of the CalRes sample exhibited overall higher alpha diversity and restructuring of the gut microbiota with decreased abundance of several microbial taxa (e.g., Clostridium ramosum, Hungatella hathewayi, Alistipi obesi). Transplantation of CalRes-microbiota into mice decreased their body fat accumulation and improved glucose tolerance compared to AdLib-microbiota recipients. Finally, the CalRes-associated microbiota reduced the levels of intestinal effector memory CD8+ T cells, intestinal memory B cells, and hepatic effector memory CD4+ and CD8+ T cells. CONCLUSION: Caloric restriction shapes the gut microbiome which can improve metabolic health and may induce a shift towards the naïve T and B cell compartment and, thus, delay immune senescence. Understanding the role of the gut microbiome as mediator of beneficial effects of low calorie diets on inflammation and metabolism may enhance the development of new therapeutic treatment options for metabolic diseases. TRIAL REGISTRATION: NCT01105143 , "Effects of negative energy balance on muscle mass regulation," registered 16 April 2010. Video Abstract.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Animales , Linfocitos T CD8-positivos , Restricción Calórica , Femenino , Microbioma Gastrointestinal/fisiología , Ratones , ARN Ribosómico 16S/genética
16.
Sci Rep ; 12(1): 1720, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-35110582

RESUMEN

The awareness of hepatitis E virus (HEV) increased significantly in the last decade due to its unexpectedly high prevalence in high-income countries. There, infections with HEV-genotype 3 (HEV-3) are predominant which can progress to chronicity in immunocompromised individuals. Persistent infection and antiviral therapy can select HEV-3 variants; however, the spectrum and occurrence of HEV-3 variants is underreported. To gain in-depth insights into the viral population and to perform detailed characterization of viral genomes, we used a new approach combining long-range PCR with next-generation and third-generation sequencing which allowed near full-length sequencing of HEV-3 genomes. Furthermore, we developed a targeted ultra-deep sequencing approach to assess the dynamics of clinically relevant mutations in the RdRp-region and to detect insertions in the HVR-domain in the HEV genomes. Using this new approach, we not only identified several insertions of human (AHNAK, RPL18) and viral origin (RdRp-derived) in the HVR-region isolated from an exemplary sample but detected a variant containing two different insertions simultaneously (AHNAK- and RdRp-derived). This finding is the first HEV-variant recognized as such showing various insertions in the HVR-domain. Thus, this molecular approach will add incrementally to our current knowledge of the HEV-genome organization and pathogenesis in chronic hepatitis E.


Asunto(s)
ADN Viral/genética , Genoma Viral , Virus de la Hepatitis E/genética , Hepatitis E/virología , Hepatitis Crónica/virología , Mutagénesis Insercional , Análisis de Secuencia de ADN , Hepatitis E/diagnóstico , Hepatitis E/genética , Hepatitis Crónica/diagnóstico , Hepatitis Crónica/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , ADN Polimerasa Dirigida por ARN/genética , Secuenciación Completa del Genoma
17.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958403

RESUMEN

We report here the closed genome sequences of three clinical Listeria monocytogenes strains of multilocus sequence typing (MLST) sequence type 8 (ST8). These strains are representatives of three separate listeriosis outbreak clusters (Alpha1, Pi4, and Sigma1) that affected Germany between 2012 and 2020.

18.
Mol Plant Pathol ; 22(8): 939-953, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33955130

RESUMEN

Amphidiploid fungal Verticillium longisporum strains Vl43 and Vl32 colonize the plant host Brassica napus but differ in their ability to cause disease symptoms. These strains represent two V. longisporum lineages derived from different hybridization events of haploid parental Verticillium strains. Vl32 and Vl43 carry same-sex mating-type genes derived from both parental lineages. Vl32 and Vl43 similarly colonize and penetrate plant roots, but asymptomatic Vl32 proliferation in planta is lower than virulent Vl43. The highly conserved Vl43 and Vl32 genomes include less than 1% unique genes, and the karyotypes of 15 or 16 chromosomes display changed genetic synteny due to substantial genomic reshuffling. A 20 kb Vl43 lineage-specific (LS) region apparently originating from the Verticillium dahliae-related ancestor is specific for symptomatic Vl43 and encodes seven genes, including two putative transcription factors. Either partial or complete deletion of this LS region in Vl43 did not reduce virulence but led to induction of even more severe disease symptoms in rapeseed. This suggests that the LS insertion in the genome of symptomatic V. longisporum Vl43 mediates virulence-reducing functions, limits damage on the host plant, and therefore tames Vl43 from being even more virulent.


Asunto(s)
Enfermedades de las Plantas , Verticillium , Ascomicetos , Genómica , Enfermedades de las Plantas/genética , Verticillium/genética , Virulencia/genética
20.
Sci Rep ; 11(1): 10358, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33990625

RESUMEN

The zoonotic pathogen Campylobacter jejuni is among the leading causes of foodborne diseases worldwide. While C. jejuni colonises many wild animals and livestock, persistence mechanisms enabling the bacterium to adapt to host species' guts are not fully understood. In order to identify putative determinants influencing host preferences of distinct lineages, bootstrapping based on stratified random sampling combined with a k-mer-based genome-wide association was conducted on 490 genomes from diverse origins in Germany and Canada. We show a strong association of both the core and the accessory genome characteristics with distinct host animal species, indicating multiple adaptive trajectories defining the evolution of C. jejuni lifestyle preferences in different ecosystems. Here, we demonstrate that adaptation towards a specific host niche ecology is most likely a long evolutionary and multifactorial process, expressed by gene absence or presence and allele variations of core genes. Several host-specific allelic variants from different phylogenetic backgrounds, including dnaE, rpoB, ftsX or pycB play important roles for genome maintenance and metabolic pathways. Thus, variants of genes important for C. jejuni to cope with specific ecological niches or hosts may be useful markers for both surveillance and future pathogen intervention strategies.


Asunto(s)
Infecciones por Campylobacter/microbiología , Campylobacter jejuni/genética , Enfermedades Transmitidas por los Alimentos/microbiología , Especificidad del Huésped/genética , Interacciones Huésped-Patógeno/genética , Alelos , Animales , Campylobacter jejuni/metabolismo , Campylobacter jejuni/patogenicidad , Canadá , ADN Bacteriano/genética , ADN Bacteriano/aislamiento & purificación , ADN Ambiental/genética , Genes Bacterianos , Alemania , Humanos , Redes y Vías Metabólicas/genética , Filogenia , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...