Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Radiat Oncol Biol Phys ; 95(1): 131-138, 2016 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-26725728

RESUMEN

PURPOSE: There are uncertainties associated with the prediction of colorectal cancer (CRC) risk from highly energetic heavy ion (HZE) radiation. We undertook a comprehensive assessment of intestinal and colonic tumorigenesis induced after exposure to high linear energy transfer (high-LET) HZE radiation spanning a range of doses and LET in a CRC mouse model and compared the results with the effects of low-LET γ radiation. METHODS AND MATERIALS: Male and female APC(1638N/+) mice (n=20 mice per group) were whole-body exposed to sham-radiation, γ rays, (12)C, (28)Si, or (56)Fe radiation. For the >1 Gy HZE dose, we used γ-ray equitoxic doses calculated using relative biological effectiveness (RBE) determined previously. The mice were euthanized 150 days after irradiation, and intestinal and colon tumor frequency was scored. RESULTS: The highest number of tumors was observed after (28)Si, followed by (56)Fe and (12)C radiation, and tumorigenesis showed a male preponderance, especially after (28)Si. Analysis showed greater tumorigenesis per unit of radiation (per cGy) at lower doses, suggesting either radiation-induced elimination of target cells or tumorigenesis reaching a saturation point at higher doses. Calculation of RBE for intestinal and colon tumorigenesis showed the highest value with (28)Si, and lower doses showed greater RBE relative to higher doses. CONCLUSIONS: We have demonstrated that the RBE of heavy ion radiation-induced intestinal and colon tumorigenesis is related to ion energy, LET, gender, and peak RBE is observed at an LET of 69 keV/µm. Our study has implications for understanding risk to astronauts undertaking long duration space missions.


Asunto(s)
Rayos gamma/efectos adversos , Radioterapia de Iones Pesados/efectos adversos , Neoplasias Intestinales/etiología , Neoplasias Inducidas por Radiación/etiología , Efectividad Biológica Relativa , Animales , Carbono/efectos adversos , Carbono/uso terapéutico , Neoplasias del Colon/etiología , Femenino , Compuestos Ferrosos/efectos adversos , Compuestos Ferrosos/uso terapéutico , Rayos gamma/uso terapéutico , Radioterapia de Iones Pesados/métodos , Intestino Delgado/efectos de la radiación , Transferencia Lineal de Energía , Masculino , Ratones , Ratones Endogámicos C57BL , Dosificación Radioterapéutica , Factores Sexuales , Silicio/efectos adversos , Silicio/uso terapéutico
2.
Radiat Res ; 182(3): 345-9, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25117622

RESUMEN

Low-linear energy transfer (low-LET) γ-ray exposure is a risk factor for colorectal cancer (CRC). Due to their high-LET nature, energetic iron ions found in space are expected to pose greater CRC risks to astronauts undertaking long-duration space missions beyond low Earth orbit. Wild-type p53-induced phosphatase 1 (Wip1) is important for cellular DNA damage response and its abrogation has been shown to inhibit spontaneous intestinal tumorigenesis in APC(Min/+) mice, a well-studied mouse model of human CRC. However, the relationship of Wip1 to radiation-induced intestinal tumorigenesis, especially by energetic iron ions, has not been investigated in APC(Min/+) mice. We have previously reported that there is a greater intestinal tumorigenic potential of iron-ion radiation relative to (137)Cs γ rays, so the purpose of the current study was to investigate whether Wip1 abrogation could influence high-LET dependent intestinal tumorigenesis in APC(Min/+) mice. Intestinal tumor frequency and grade were assessed in APC(Min/+)/Wip1(-/-) mice and results were compared to those in APC(Min/+)/Wip1(+/+) mice after exposure to a mean absorbed dose of 2 Gy from (137)Cs γ rays or 1.6 Gy from 1 GeV/n iron ions. Cellular differentiation and proliferation were also assessed in the intestinal tumors of sham-irradiated and irradiated mice. Decreased tumor frequency and lower tumor grade were observed in APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice. Notably, a similar decrease (∼6-fold in both groups) in tumor number was observed in sham-irradiated and γ-irradiated APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice. However, tumorigenesis in the energetic iron-ion exposed group was reduced ∼8-fold in APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice. A significantly lower proliferation/differentiation index in tumors of iron-ion exposed APC(Min/+)/Wip1(-/-) relative to APC(Min/+)/Wip1(+/+) mice suggests that reduced proliferation and enhanced differentiation as a result of Wip1 abrogation maybe involved. In conclusion, the current study demonstrated that the absence of Wip1 blocked radiation-induced intestinal tumorigenesis irrespective of radiation quality and has implications for developing preventive strategies against the tumorigenic potential of radiation exposure on earth and in outer space.


Asunto(s)
Genes APC , Neoplasias Intestinales/etiología , Neoplasias Inducidas por Radiación/etiología , Fosfoproteínas Fosfatasas/fisiología , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Neoplasias Intestinales/patología , Neoplasias Intestinales/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína Fosfatasa 2C
3.
FEBS J ; 281(10): 2431-42, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24684682

RESUMEN

Selective estrogen receptor modulators such as tamoxifen (TAM) significantly improve breast cancer-specific survival for women with estrogen receptor-positive (ER+) disease. However, resistance to TAM remains a major clinical problem. The resistant phenotype is usually not driven by loss or mutation of the estrogen receptor; instead, changes in multiple proliferative and/or survival pathways over-ride the inhibitory effects of TAM. Estrogen-related receptor Î³ (ERRγ) is an orphan member of the nuclear receptor superfamily that promotes TAM resistance in ER+ breast cancer cells. This study sought to clarify the mechanism(s) by which this orphan nuclear receptor is regulated, and hence affects TAM resistance. mRNA and protein expression/phosphorylation were monitored by RT-PCR and western blotting, respectively. Site-directed mutagenesis was used to disrupt consensus extracellular signal-regulated kinase (ERK) target sites. Cell proliferation and cell-cycle progression were measured by flow cytometric methods. ERRγ transcriptional activity was assessed by dual-luciferase promoter-reporter assays. We show that ERRγ protein levels are affected by the activation state of ERK/mitogen-activated protein kinase, and mutation of consensus ERK target sites impairs ERRγ-driven transcriptional activity and TAM resistance. These findings shed new light on the functional significance of ERRγ in ER+ breast cancer, and are the first to demonstrate a role for kinase regulation of this orphan nuclear receptor.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Sistema de Señalización de MAP Quinasas , Receptores de Estrógenos/metabolismo , Tamoxifeno/farmacología , Antineoplásicos Hormonales/farmacología , Neoplasias de la Mama/genética , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Mutagénesis Sitio-Dirigida , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismo , Receptores de Estrógenos/química , Receptores de Estrógenos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Moduladores Selectivos de los Receptores de Estrógeno/farmacología
4.
J Bacteriol ; 193(15): 3894-903, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21642453

RESUMEN

Transfer of a phosphoryl group from autophosphorylated CheA (P-CheA) to CheY is an important step in the bacterial chemotaxis signal transduction pathway. This reaction involves CheY (i) binding to the P2 domain of P-CheA and then (ii) acquiring the phosphoryl group from the P1 domain. Crystal structures indicated numerous side chain interactions at the CheY-P2 binding interface. To investigate the individual contributions of the P2 side chains involved in these contacts, we analyzed the effects of eight alanine substitution mutations on CheA-CheY binding interactions. An F214A substitution in P2 caused ∼1,000-fold reduction in CheA-CheY binding affinity, while Ala substitutions at other P2 positions had small effects (E171A, E178A, and I216A) or no detectable effects (H181A, D202A, D207A, and C213A) on binding affinity. These results are discussed in relation to previous in silico predictions of hot-spot and anchor positions at the CheA-CheY interface. We also investigated the consequences of these mutations for chemotaxis signal transduction in living cells. CheA(F214A) was defective in mediating localization of CheY-YFP to the large clusters of signaling proteins that form at the poles of Escherichia coli cells, while the other CheA variants did not differ from wild-type (wt) CheA (CheA(wt)) in this regard. In our set of mutants, only CheA(F214A) exhibited a markedly diminished ability to support chemotaxis in motility agar assays. Surprisingly, however, in FRET assays that monitored receptor-regulated production of phospho-CheY, CheA(F214A) (and each of the other Ala substitution mutants) performed just as well as CheA(wt). Overall, our findings indicate that F214 serves as an anchor residue at the CheA-CheY interface and makes an important contribution to the binding energy in vitro and in vivo; however, loss of this contribution does not have a large negative effect on the overall ability of the signaling pathway to modulate P-CheY levels in response to chemoattractants.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Quimiotaxis , Escherichia coli/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli , Histidina Quinasa , Proteínas de la Membrana/genética , Proteínas Quimiotácticas Aceptoras de Metilo , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...