Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37642294

RESUMEN

Mycobacterium tuberculosis (Mtb) is evolutionarily equipped to resist exogenous reactive oxygen species (ROS) but shows vulnerability to an increase in endogenous ROS (eROS). Since eROS is an unavoidable consequence of aerobic metabolism, understanding how Mtb manages eROS levels is essential yet needs to be characterized. By combining the Mrx1-roGFP2 redox biosensor with transposon mutagenesis, we identified 368 genes (redoxosome) responsible for maintaining homeostatic levels of eROS in Mtb. Integrating redoxosome with a global network of transcriptional regulators revealed a hypothetical protein (Rv0158) as a critical node managing eROS in Mtb. Disruption of rv0158 (rv0158 KO) impaired growth, redox balance, respiration, and metabolism of Mtb on glucose but not on fatty acids. Importantly, rv0158 KO exhibited enhanced growth on propionate, and the Rv0158 protein directly binds to methylmalonyl-CoA, a key intermediate in propionate catabolism. Metabolite profiling, ChIP-Seq, and gene-expression analyses indicate that Rv0158 manages metabolic neutralization of propionate toxicity by regulating the methylcitrate cycle. Disruption of rv0158 enhanced the sensitivity of Mtb to oxidative stress, nitric oxide, and anti-TB drugs. Lastly, rv0158 KO showed poor survival in macrophages and persistence defect in mice. Our results suggest that Rv0158 is a metabolic integrator for carbon metabolism and redox balance in Mtb.


Asunto(s)
Escarabajos , Mycobacterium tuberculosis , Animales , Ratones , Mycobacterium tuberculosis/genética , Propionatos , Especies Reactivas de Oxígeno , Homeostasis , Oxidación-Reducción , Mutagénesis
2.
Antimicrob Agents Chemother ; 66(9): e0059222, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-35975988

RESUMEN

Moxifloxacin is central to treatment of multidrug-resistant tuberculosis. Effects of moxifloxacin on the Mycobacterium tuberculosis redox state were explored to identify strategies for increasing lethality and reducing the prevalence of extensively resistant tuberculosis. A noninvasive redox biosensor and a reactive oxygen species (ROS)-sensitive dye revealed that moxifloxacin induces oxidative stress correlated with M. tuberculosis death. Moxifloxacin lethality was mitigated by supplementing bacterial cultures with an ROS scavenger (thiourea), an iron chelator (bipyridyl), and, after drug removal, an antioxidant enzyme (catalase). Lethality was also reduced by hypoxia and nutrient starvation. Moxifloxacin increased the expression of genes involved in the oxidative stress response, iron-sulfur cluster biogenesis, and DNA repair. Surprisingly, and in contrast with Escherichia coli studies, moxifloxacin decreased expression of genes involved in respiration, suppressed oxygen consumption, increased the NADH/NAD+ ratio, and increased the labile iron pool in M. tuberculosis. Lowering the NADH/NAD+ ratio in M. tuberculosis revealed that NADH-reductive stress facilitates an iron-mediated ROS surge and moxifloxacin lethality. Treatment with N-acetyl cysteine (NAC) accelerated respiration and ROS production, increased moxifloxacin lethality, and lowered the mutant prevention concentration. Moxifloxacin induced redox stress in M. tuberculosis inside macrophages, and cotreatment with NAC potentiated the antimycobacterial efficacy of moxifloxacin during nutrient starvation, inside macrophages, and in mice, where NAC restricted the emergence of resistance. Thus, NADH-reductive stress contributes to moxifloxacin-mediated killing of M. tuberculosis, and the respiration stimulator (NAC) enhances lethality and suppresses the emergence of drug resistance.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , 2,2'-Dipiridil/farmacología , Animales , Antioxidantes/farmacología , Catalasa , Cisteína , Hierro , Quelantes del Hierro/farmacología , Ratones , Moxifloxacino/farmacología , NAD , Especies Reactivas de Oxígeno/metabolismo , Azufre/farmacología , Tiourea , Tuberculosis/microbiología
3.
PLoS Pathog ; 18(4): e1010475, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35427399

RESUMEN

Iron-sulfur (Fe-S) cluster proteins carry out essential cellular functions in diverse organisms, including the human pathogen Mycobacterium tuberculosis (Mtb). The mechanisms underlying Fe-S cluster biogenesis are poorly defined in Mtb. Here, we show that Mtb SufT (Rv1466), a DUF59 domain-containing essential protein, is required for the Fe-S cluster maturation. Mtb SufT homodimerizes and interacts with Fe-S cluster biogenesis proteins; SufS and SufU. SufT also interacts with the 4Fe-4S cluster containing proteins; aconitase and SufR. Importantly, a hyperactive cysteine in the DUF59 domain mediates interaction of SufT with SufS, SufU, aconitase, and SufR. We efficiently repressed the expression of SufT to generate a SufT knock-down strain in Mtb (SufT-KD) using CRISPR interference. Depleting SufT reduces aconitase's enzymatic activity under standard growth conditions and in response to oxidative stress and iron limitation. The SufT-KD strain exhibited defective growth and an altered pool of tricarboxylic acid cycle intermediates, amino acids, and sulfur metabolites. Using Seahorse Extracellular Flux analyzer, we demonstrated that SufT depletion diminishes glycolytic rate and oxidative phosphorylation in Mtb. The SufT-KD strain showed defective survival upon exposure to oxidative stress and nitric oxide. Lastly, SufT depletion reduced the survival of Mtb in macrophages and attenuated the ability of Mtb to persist in mice. Altogether, SufT assists in Fe-S cluster maturation and couples this process to bioenergetics of Mtb for survival under low and high demand for Fe-S clusters.


Asunto(s)
Proteínas Hierro-Azufre , Mycobacterium tuberculosis , Aconitato Hidratasa/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Proteínas Hierro-Azufre/metabolismo , Ratones , Mycobacterium tuberculosis/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo
4.
J Bacteriol ; 204(4): e0005822, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35357163

RESUMEN

The Mycobacterium tuberculosis genome harbors nine toxin-antitoxin (TA) systems that are members of the mazEF family, unlike other prokaryotes, which have only one or two. Although the overall tertiary folds of MazF toxins are predicted to be similar, it is unclear how they recognize structurally different RNAs and antitoxins with divergent sequence specificity. Here, we have expressed and purified the individual components and complex of the MazEF6 TA system from M. tuberculosis. Size exclusion chromatography-multiangle light scattering (SEC-MALS) was performed to determine the oligomerization status of the toxin, antitoxin, and the complex in different stoichiometric ratios. The relative stabilities of the proteins were determined by nano-differential scanning fluorimetry (nano-DSF). Microscale thermophoresis (MST) and yeast surface display (YSD) were performed to measure the relative affinities between the cognate toxin-antitoxin partners. The interaction between MazEF6 complexes and cognate promoter DNA was also studied using MST. Analysis of paired-end RNA sequencing data revealed that the overexpression of MazF6 resulted in differential expression of 323 transcripts in M. tuberculosis. Network analysis was performed to identify the nodes from the top-response network. The analysis of mRNA protection ratios resulted in identification of putative MazF6 cleavage site in its native host, M. tuberculosis. IMPORTANCE M. tuberculosis harbors a large number of type II toxin-antitoxin (TA) systems, the exact roles for most of which are unclear. Prior studies have reported that overexpression of several of these type II toxins inhibits bacterial growth and contributes to the formation of drug-tolerant populations in vitro. To obtain insights into M. tuberculosis MazEF6 type II TA system function, we determined stability, oligomeric states, and binding affinities of cognate partners with each other and with their promoter operator DNA. Using RNA-seq data obtained from M. tuberculosis overexpression strains, we have identified putative MazF6 cleavage sites and targets in its native, cellular context.


Asunto(s)
Antitoxinas , Mycobacterium tuberculosis , Sistemas Toxina-Antitoxina , Tuberculosis , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Mycobacterium tuberculosis/metabolismo , Sistemas Toxina-Antitoxina/genética
5.
iScience ; 25(2): 103745, 2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35118358

RESUMEN

Tuberculosis (TB) treatment involves a multidrug regimen for six months, and until two months, it is unclear if treatment is effective. This delay can lead to the evolution of drug resistance, lung damage, disease spread, and transmission. We identify a blood-based 9-gene signature using a computational pipeline that constructs and interrogates a genome-wide transcriptome-integrated protein-interaction network. The identified signature is able to determine treatment response at week 1-2 in three independent public datasets. Signature-based R9-score correctly detected treatment response at individual timepoints (204 samples) from a newly developed South Indian longitudinal cohort involving 32 patients with pulmonary TB. These results are consistent with conventional clinical metrics and can discriminate good from poor treatment responders at week 2 (AUC 0.93(0.81-1.00)). In this work, we provide proof of concept that the R9-score can determine treatment effectiveness, making a case for designing a larger clinical study.

6.
EBioMedicine ; 67: 103352, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33906069

RESUMEN

BACKGROUND: Precise differential diagnosis between acute viral and bacterial infections is important to enable appropriate therapy, avoid unnecessary antibiotic prescriptions and optimize the use of hospital resources. A systems view of host response to infections provides opportunities for discovering sensitive and robust molecular diagnostics. METHODS: We combine blood transcriptomes from six independent datasets (n = 756) with a knowledge-based human protein-protein interaction network, identifies subnetworks capturing host response to each infection class, and derives common response cores separately for viral and bacterial infections. We subject the subnetworks to a series of computational filters to identify a parsimonious gene panel and a standalone diagnostic score that can be applied to individual samples. We rigorously validate the panel and the diagnostic score in a wide range of publicly available datasets and in a newly developed Bangalore-Viral Bacterial (BL-VB) cohort. FINDING: We discover a 10-gene blood-based biomarker panel (Panel-VB) that demonstrates high predictive performance to distinguish viral from bacterial infections, with a weighted mean AUROC of 0.97 (95% CI: 0.96-0.99) in eleven independent datasets (n = 898). We devise a new stand-alone patient-wise score (VB10) based on the panel, which shows high diagnostic accuracy with a weighted mean AUROC of 0.94 (95% CI 0.91-0.98) in 2996 patient samples from 56 public datasets from 19 different countries. Further, we evaluate VB10 in a newly generated South Indian (BL-VB, n = 56) cohort and find 97% accuracy in the confirmed cases of viral and bacterial infections. We find that VB10 is (a) capable of accurately identifying the infection class in culture-negative indeterminate cases, (b) reflects recovery status, and (c) is applicable across different age groups, covering a wide spectrum of acute bacterial and viral infections, including uncharacterized pathogens. We tested our VB10 score on publicly available COVID-19 data and find that our score detected viral infection in patient samples. INTERPRETATION: Our results point to the promise of VB10 as a diagnostic test for precise diagnosis of acute infections and monitoring recovery status. We expect that it will provide clinical decision support for antibiotic prescriptions and thereby aid in antibiotic stewardship efforts. FUNDING: Grand Challenges India, Biotechnology Industry Research Assistance Council (BIRAC), Department of Biotechnology, Govt. of India.


Asunto(s)
Infecciones Bacterianas/diagnóstico , Biomarcadores/sangre , Biología Computacional/métodos , Virosis/diagnóstico , Adulto , Infecciones Bacterianas/sangre , Infecciones Bacterianas/genética , Bases de Datos Factuales , Sistemas de Apoyo a Decisiones Clínicas , Diagnóstico Diferencial , Femenino , Perfilación de la Expresión Génica , Humanos , India , Masculino , Persona de Mediana Edad , Estudios Observacionales como Asunto , Valor Predictivo de las Pruebas , Mapas de Interacción de Proteínas , Virosis/sangre , Virosis/genética
7.
FASEB J ; 35(4): e21475, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33772870

RESUMEN

Cell signaling relies on second messengers to transduce signals from the sensory apparatus to downstream signaling pathway components. In bacteria, one of the most important and ubiquitous second messenger is the small molecule cyclic diguanosine monophosphate (c-di-GMP). While the biosynthesis, degradation, and regulatory pathways controlled by c-di-GMP are well characterized, the mechanisms through which c-di-GMP controls these processes are not entirely understood. Herein we present the report of a c-di-GMP sensing sensor histidine kinase PdtaS (Rv3220c), which binds to c-di-GMP at submicromolar concentrations, subsequently perturbing signaling of the PdtaS-PdtaR (Rv1626) two-component system. Aided by biochemical analysis, genetics, molecular docking, FRET microscopy, and structural modelling, we have characterized the binding of c-di-GMP in the GAF domain of PdtaS. We show that a pdtaS knockout in Mycobacterium smegmatis is severely compromised in growth on amino acid deficient media and exhibits global transcriptional dysregulation. The perturbation of the c-di-GMP-PdtaS-PdtaR axis results in a cascade of cellular changes recorded by a multiparametric systems' approach of transcriptomics, unbiased metabolomics, and lipid analyses.


Asunto(s)
Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Histidina Quinasa/metabolismo , Bacterias , Proteínas Bacterianas/metabolismo , Simulación del Acoplamiento Molecular/métodos , Mycobacterium/metabolismo , Mycobacterium smegmatis/crecimiento & desarrollo , Mycobacterium smegmatis/metabolismo , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/fisiología
8.
Front Microbiol ; 11: 2037, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042034

RESUMEN

The prokaryotic ubiquitous Toxin-antitoxin (TA) modules encodes for a stable toxin and an unstable antitoxin. VapBC subfamily is the most abundant Type II TA system in M. tuberculosis genome. However, the exact physiological role for most of these Type II TA systems are still unknown. Here, we have comprehensively characterized the VapBC21 TA locus from M. tuberculosis. The overexpression of VapC21 inhibited mycobacterial growth in a bacteriostatic manner and as expected, growth inhibition was abrogated upon co-expression of the cognate antitoxin, VapB21. We observed that the deletion of vapC21 had no noticeable influence on the in vitro and in vivo growth of M. tuberculosis. Using co-expression and biophysical studies, we observed that in addition to VapB21, VapC21 is also able to interact with non-cognate antitoxin, VapB32. The strength of interaction varied between the cognate and non-cognate TA pairs. The overexpression of VapC21 resulted in differential expression of approximately 435 transcripts in M. tuberculosis. The transcriptional profiles obtained upon ectopic expression of VapC21 was similar to those reported in M. tuberculosis upon exposure to stress conditions such as nutrient starvation and enduring hypoxic response. Further, VapC21 overexpression also led to increased expression of WhiB7 regulon and bacterial tolerance to aminoglycosides and ethambutol. Taken together, these results indicate that a complex network of interactions exists between non-cognate TA pairs and VapC21 contributes to drug tolerance in vitro.

9.
Sci Adv ; 5(7): eaax1946, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31355341

RESUMEN

Drug resistance is a public health concern that threatens to undermine decades of medical progress. ESKAPE pathogens cause most nosocomial infections, and are frequently resistant to carbapenem antibiotics, usually leaving tigecycline and colistin as the last treatment options. However, increasing tigecycline resistance and colistin's nephrotoxicity severely restrict use of these antibiotics. We have designed antimicrobial peptides using a maximum common subgraph approach. Our best peptide (Ω76) displayed high efficacy against carbapenem and tigecycline-resistant Acinetobacter baumannii in mice. Mice treated with repeated sublethal doses of Ω76 displayed no signs of chronic toxicity. Sublethal Ω76 doses co-administered alongside sublethal colistin doses displayed no additive toxicity. These results indicate that Ω76 can potentially supplement or replace colistin, especially where nephrotoxicity is a concern. To our knowledge, no other existing antibiotics occupy this clinical niche. Mechanistically, Ω76 adopts an α-helical structure in membranes, causing rapid membrane disruption, leakage, and bacterial death.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Péptidos Catiónicos Antimicrobianos/farmacología , Carbapenémicos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Tigeciclina/farmacología , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/aislamiento & purificación , Acinetobacter baumannii/ultraestructura , Animales , Péptidos Catiónicos Antimicrobianos/química , Péptidos Catiónicos Antimicrobianos/uso terapéutico , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Modelos Animales de Enfermedad , Diseño de Fármacos , Células HeLa , Humanos , Cinética , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Peritoneo/efectos de los fármacos , Peritoneo/patología , Estructura Secundaria de Proteína , Factores de Tiempo
10.
ACS Infect Dis ; 2(9): 592-607, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27759382

RESUMEN

The global mechanisms and associated molecular alterations that occur in drug-resistant mycobacteria are poorly understood. To address this, we obtain genomics data and then construct a genome-scale response network in isoniazid-resistant Mycobacterium smegmatis and apply a network-mining algorithm. Through this, we decipher global alterations in an unbiased manner and identify emergent vulnerabilities in resistant bacilli, of which redox response was prominent. Using phenotypic profiling, we find that resistant bacilli exhibit collateral sensitivity to several compounds that block antioxidant responses. We find that nanogram/milliliter concentrations of ebselen, vancomycin, and phenylarsine oxide, in combination with isoniazid, are highly effective against Mycobacterium tuberculosis H37Rv and three clinical drug-resistant strains. Dynamic measurements of cytoplasmic redox potential revealed a surprisingly diminished capacity of clinical drug-resistant strains to counteract oxidative stress, providing a mechanistic basis for efficient and synergistic mycobactericidal activity of the drug combinations. Ebselen and vancomycin appear to be promising repurposable drugs.


Asunto(s)
Antituberculosos/farmacología , Farmacorresistencia Bacteriana , Infecciones por Mycobacterium no Tuberculosas/microbiología , Mycobacterium smegmatis/efectos de los fármacos , Sinergismo Farmacológico , Genoma Bacteriano , Humanos , Isoniazida/farmacología , Pruebas de Sensibilidad Microbiana , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Oxidación-Reducción , Tuberculosis/microbiología
11.
Mol Cell Endocrinol ; 427: 1-12, 2016 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-26940038

RESUMEN

The Luteinizing hormone receptor (LHR) has a large extracellular domain (amino acid residues, a.a.1-355) and a transmembrane domain (TMD; a.a. 356-699), essential for hormone binding and signaling, respectively. The LHR hinge region (a.a. 256-355) connects the two domains and acts as an activating switch for the receptor by an unknown mechanism. LHR hinge-specific Single chain fragment variables (ScFv) stimulated cAMP production by the stable and transiently transfected cell lines expressing LHR in a hormone-independent manner and the C-terminal region of LHR hinge (a.a. 313-349) was identified as the probable epitope for one agonistic ScFv. This epitope attained a helical conformation upon agonistic ScFv binding and the activity of the ScFv was dependent on Y331 sulfation. ScFv was also able to activate TMD mutants, D578Y and A593P, reemphasizing the role of TM helix VI in LHR activation.


Asunto(s)
Receptores de HL/fisiología , Anticuerpos de Cadena Única , Animales , Células CHO , Gonadotropina Coriónica/química , Gonadotropina Coriónica/metabolismo , Cricetulus , Mapeo Epitopo , Células HEK293 , Humanos , Modelos Moleculares , Dominios Proteicos , Receptores de HL/química , Receptores de HL/metabolismo , Anticuerpos de Cadena Única/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...