Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-37453025

RESUMEN

Nitrilases are the enzymes that catalyze the hydrolysis of nitriles to corresponding carboxylic acid and ammonia. They are broadly categorized into aromatic, aliphatic, and arylacetonitrilases based on their substrate specificity. Most of the studies pertaining to these enzymes in the literature have focused on aromatic and aliphatic nitrilases. However, arylacetonitrilases have attracted the attention of academia and industry in the last several years due to their aryl specificity and enantioselectivity. They have emerged as interesting biocatalytic tools in green chemistry to synthesize useful aryl acids such as mandelic acid and derivatives of phenylacetic acid. The aim of the present review is to collate information on the arylacetonitrilases and their catalytic properties including enantioselectivity and potential applications in organic synthesis.

2.
Bioprocess Biosyst Eng ; 46(2): 195-206, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36451047

RESUMEN

In the present study, the Gordonia terrae was subjected to chemical mutagenesis using ethyl methane sulfonate (EMS) and methyl methane sulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (MNNG), 5-bromouracil (5-BU) and hydroxylamine with the aim of improving the catalytic efficiency of its nitrilase for conversion of 3-cyanopyridine to nicotinic acid. A mutant MN12 generated with MNNG exhibited increase in nitrilase activity from 0.5 U/mg dcw (dry cell weight) (in the wild G. terrae) to 1.33 U/mg dcw. Further optimizations of culture conditions using response surface methodology enhanced the enzyme production to 1.2-fold. Whole-cell catalysis was adopted for bench-scale synthesis of nicotinic acid, and 100% conversion of 100 mM 3-cyanopyridine was achieved in potassium phosphate buffer (0.1 M, pH 8.0) at 40 °C in 15 min. The whole-cell nitrilase of the mutant MN12 exhibited higher rate of product formation and volumetric productivity, i.e., 24.56 g/h/g dcw and 221 g/L as compared to 8.95 g/h/g dcw and 196.8 g/L of the wild G. terrae. The recovered product was confirmed by HPLC, FTIR and NMR analysis with high purity (> 99.9%). These results indicated that the mutant MN12 of G. terrae as whole-cell nitrilase is a very promising biocatalyst for the large-scale synthesis of nicotinic acid.


Asunto(s)
Bacteria Gordonia , Niacina , Metilnitronitrosoguanidina , Aminohidrolasas/química , Biotransformación , Bacteria Gordonia/genética , Metano
3.
3 Biotech ; 12(11): 303, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36276445

RESUMEN

Nitrilase mediated synthesis of nicotinic acid (vitamin B3) from 3-cyanopyridine has emerged as promising viable alternative to its chemical synthesis. In the present investigation, the nitrilase production in Gordonia terrae MTCC8139 has been increased by two fold with inducer feeding approach [i.e. the addition of 0.5% (v/v) isobutyronitrile as inducer at 0, 16 and 24 h of incubation of the culture]. The use of hyper induced whole cell nitrilase of G. terrae as biocatalyst (10 U per ml reaction) to synthesize nicotinic acid from 3-cyanopyridine in a fed batch reaction at one litre scale resulted in accumulation of 1.65 M (202 g) nicotinic acid in 330 min. The catalytic productivity of hyper induced whole cell nitrilase was increased from 8.95 to 15.3 g/h/g dcw and the reaction time was reduced to half. This is the highest productivity of nicotinic acid in a nitrilase mediated process so far reported. The achievements of the present investigation will lead to mitigate the cost of nitrilase vis-a-vis nicotinic acid production at large scale.

4.
3 Biotech ; 11(5): 212, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33928000

RESUMEN

An amperometric biosensor for xanthine was designed, based on covalent immobilization of xanthine oxidase (XO) of Bacillus pumilus RL-2d onto a screen-printed multi-walled carbon nanotubes gold nanoparticle-based electrodes (Nano-Au/c-MWCNT). The carboxyl groups at the electrode surface were activated by the use of 1-Ethyl-3-(3-dimethylaminopropyl carbodiimide) (EDC) and N-hydroxysuccinimide (NHS). The working electrode was then coated with 6 µL of xanthine oxidase (0.273 U/mg protein). The cyclic voltammetry (CV) study was done for the characterization of the sensor using [K3Fe(CN)6] as an artificial electron donor. The sensitivity (S) and the limit of detection (LOD) of the biosensor were 2388.88 µA/cm2/nM (2.388 µA/cm2/µM) and 1.14 nM, respectively. The developed biosensor was used for determination of fish meat freshness.

5.
Protein Expr Purif ; 160: 36-44, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30926462

RESUMEN

Xanthine oxidase (EC 1.17.3.2) is a key enzyme of purine metabolism and has potential applications in food and pharmaceutical industries. In the present study, a new bacterial source of xanthine oxidase i.e. Acinetobacter calcoaceticus RL2-M4 with high oxidase activity was isolated from soil. The culture conditions were optimized with one variable at a time (OVAT) and response surface methodology (RSM) approaches included: a minimal salt medium (MSM) of pH 7.0 supplemented with 0.8% yeast extract, 8.5 mM xanthine and incubation at 30 °C for 24 h. Under these culture conditions 11.57 fold increase in the production of this enzyme was achieved. The enzyme was purified from A. calcoaceticus RL2-M4 using anion exchange chromatography to 8.18 fold with 31% yield and specific activity of 4.58 U/mg protein. SDS-PAGE analysis of the purified enzyme revealed that it was homodimer of 95 kDa and its native molecular mass was estimated to be 190 kDa. This enzyme was found to be stable at 35 °C for 5 h. The purified xanthine oxidase of A. calcoaceticus RL2-M4 had Km 0.3 mM and Vmax 5.8 U/mg protein using xanthine as substrate. The activity and stability characteristic of xanthine oxidase of A. calcoaceticus RL2-M4 makes it a potentially good enzyme for industrial applications.


Asunto(s)
Acinetobacter calcoaceticus/enzimología , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Xantina Oxidasa/química , Xantina Oxidasa/aislamiento & purificación , Acinetobacter calcoaceticus/química , Acinetobacter calcoaceticus/genética , Acinetobacter calcoaceticus/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cromatografía por Intercambio Iónico , Dimerización , Electroforesis en Gel de Poliacrilamida , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Microbiología del Suelo , Temperatura , Xantina Oxidasa/genética , Xantina Oxidasa/metabolismo
6.
Appl Biochem Biotechnol ; 185(4): 925-946, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29380295

RESUMEN

Nitrile metabolizing enzymes, i.e., aldoxime dehydratase, hydroxynitrile lyase, nitrilase, nitrile hydratase, and amidase, are the key catalysts in carbon nitrogen triple bond anabolism and catabolism. Over the past several years, these enzymes have drawn considerable attention as prominent biocatalysts in academia and industries because of their wide applications. Research on various aspects of these biocatalysts, i.e., sources, screening, function, purification, molecular cloning, structure, and mechanisms, has been conducted, and bioprocesses at various scales have been designed for the synthesis of myriads of useful compounds. This review is focused on the potential of nitrile metabolizing enzymes in the production of commercially important fine chemicals such as nitriles, carboxylic acids, and amides. A number of opportunities and challenges of nitrile metabolizing enzymes in bioprocess development for the production of bulk and fine chemicals are discussed.


Asunto(s)
Aldehído-Liasas/metabolismo , Amidohidrolasas/metabolismo , Aminohidrolasas/metabolismo , Hidroliasas/metabolismo , Nitrilos/metabolismo , Aldehído-Liasas/genética , Amidohidrolasas/genética , Aminohidrolasas/genética , Biotransformación , Hidroliasas/genética
7.
Biomed Res Int ; 2017: 7039245, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28497061

RESUMEN

Next-generation DNA sequencing (NGS) has made it feasible to sequence large number of microbial genomes and advancements in computational biology have opened enormous opportunities to mine genome sequence data for novel genes and enzymes or their sources. In the present communication in silico mining of microbial genomes has been carried out to find novel sources of nitrilases. The sequences selected were analyzed for homology and considered for designing motifs. The manually designed motifs based on amino acid sequences of nitrilases were used to screen 2000 microbial genomes (translated to proteomes). This resulted in identification of one hundred thirty-eight putative/hypothetical sequences which could potentially code for nitrilase activity. In vitro validation of nine predicted sources of nitrilases was done for nitrile/cyanide hydrolyzing activity. Out of nine predicted nitrilases, Gluconacetobacter diazotrophicus, Sphingopyxis alaskensis, Saccharomonospora viridis, and Shimwellia blattae were specific for aliphatic nitriles, whereas nitrilases from Geodermatophilus obscurus, Nocardiopsis dassonvillei, Runella slithyformis, and Streptomyces albus possessed activity for aromatic nitriles. Flavobacterium indicum was specific towards potassium cyanide (KCN) which revealed the presence of nitrilase homolog, that is, cyanide dihydratase with no activity for either aliphatic, aromatic, or aryl nitriles. The present study reports the novel sources of nitrilases and cyanide dihydratase which were not reported hitherto by in silico or in vitro studies.


Asunto(s)
Aminohidrolasas/genética , Bacterias/genética , Proteínas Bacterianas/genética , Genoma Bacteriano , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN/métodos , Bacterias/enzimología
8.
Indian J Microbiol ; 56(1): 88-98, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26843701

RESUMEN

Xanthine oxidase is an important enzyme of purine metabolism that catalyzes the hydroxylation of hypoxanthine to xanthine and then xanthine to uric acid. A thermostable xanthine oxidase is being reported from a thermophilic organism RL-2d isolated from the Manikaran (Kullu) hot spring of Himachal Pradesh (India). Based on the morphology, physiological tests, and 16S rDNA gene sequence, RL-2d was identified as Bacillus pumilus. Optimization of physiochemical parameters resulted into 4.1-fold increase in the xanthine oxidase activity from 0.051 U/mg dcw (dry cell weight) to 0.209 U/mg dcw. The xanthine oxidase of B. pumilus RL-2d has exhibited very good thermostability and its t1/2 at 70 and 80 °C were 5 and 1 h, respectively. Activity of this enzyme was strongly inhibited by Hg(2+), Ag(+) and allopurinol. The investigation showed that B. pumilus RL-2d exhibited highest xanthine oxidase activity and remarkable thermostability among the other xanthine oxidases reported so far.

9.
Protein Pept Lett ; 23(2): 152-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26667322

RESUMEN

An intracellular aliphatic amide degrading inducible amidase produced by Rhodococcus rhodochrous PA-34 was characterized and acrylic acid synthesis from acrylamide was carried out using whole cell amidase. A bioprocess was developed at 50 ml fed batch reaction using 400 mM acrylamide feeding at an interval of 30 min resulted in the production of 4 g acrylic acid with volumetric and catalytic productivity of 80 g/l and 19 g/g/h respectively. The amidase of this organism had molecular weight of 40 kDa and was purified to 8.5 fold with 8% yield. This enzyme was active within the temperature range of 30 to 60 °C, with optimum temperature 45 °C and pH 7.5. The Vmax, Km, and kcat of purified amidase were calculated as 250 U/mg protein, 4.5 mM, and 166 sec-1 for acrylamide. The enzyme showed tolerance to metal chelating agent (EDTA) and was strongly inhibited by heavy metal ions Hg2+, Ag2+, Cu2+ and Co2+. R. rhodochrous PA-34 amidase preferentially hydrolyzed small aliphatic toxic amide such as acrylamide. Thus, the amidase of R. rhodochrous PA-34 is promising biocatalyst for the synthesis of industrially important acids and biodegradation of toxic amides.


Asunto(s)
Acrilatos/síntesis química , Amidohidrolasas/química , Rhodococcus/enzimología , Amidas/química , Amidohidrolasas/genética , Amidohidrolasas/aislamiento & purificación , Secuencia de Aminoácidos/genética , Catálisis , Especificidad por Sustrato , Temperatura
10.
3 Biotech ; 6(2): 180, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28330252

RESUMEN

Proteases are a class of enzymes that catalyze hydrolysis of peptide bonds of proteins. In this study, 221 proteolytic bacterial isolates were obtained by enrichment culture method from soils of various regions of Himachal Pradesh, India. From these a hyper producer of protease was screened and identified by morphological and physiological testing and by 16S rDNA sequence as Serratia marcescens PPB-26. Statistical optimization of physiochemical parameters enhanced the protease production by 75 %. Protease of S. marcescens PPB-26 was classified as a metalloprotease. It showed optimal activity at 30 °C, pH 7.5 (0.15 M Tris-HCl buffer) and with 0.8 % substrate concentration. It had K m = 0.3 %, V max = 34.5 µmol min-1 mg-1 protein and a half life of 2 days at 30 °C. The enzyme was stable in most metal ions but showed increased activity with Fe2+ and Cu2+ while strong inhibition with Co2+ and Zn2+. Further investigation showed that the enzyme could not only retain its activity in various organic solvents but also showed increased activity with methanol and ethanol. The reported metalloprotease is thus a potential candidate for carrying out industrial peptide synthesis.

11.
Bioprocess Biosyst Eng ; 38(7): 1267-79, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25911422

RESUMEN

Mutants of Gordonia terrae were generated using chemical mutagens for better activity, stability and higher substrate/product tolerance of its nitrilase enzyme. Mutant E9 showed two-time increase in activity and tolerated p-hydroxybenzonitrile (p-HBN) up to 50 mM. Response surface methodology and inducer mediation approach further enhanced the production of enzyme to 2.5-fold. The bench scale production of p-hydroxybenzoic acid (p-HBA) was carried out in a fed-batch reaction (500-mL scale) using whole-cell nitrilase of mutant E9 in 0.1 M potassium phosphate buffer (pH 8.0) at 40 °C. Total six feedings each at an interval of 45 min resulted in accumulation of 360 mM (21.6 g) of p-HBA with a purity of 99%. The catalytic and volumetric productivity of bioprocess using mutant G. terrae was improved to 1.8 g h(-1) g DCW (-1) and 43.2 g L(-1), respectively, from 0.78 g h(-1) g DCW (-1) and 28.8 g L(-1) using resting cells of wild strain. K m and V max of purified nitrilase from mutant E9 were 55 U mg(-1) and 1.8 mM for p-HBN with a higher turnover number of 36 s(-1) × 10(-3).


Asunto(s)
Aminohidrolasas/metabolismo , Bacteria Gordonia/enzimología , Mutación , Parabenos/metabolismo , Aminohidrolasas/aislamiento & purificación , Reactores Biológicos , Bacteria Gordonia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...