Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 88(17): e0022822, 2022 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-36005820

RESUMEN

Milne Fiord, located on the coastal margin of the Last Ice Area (LIA) in the High Arctic (82°N, Canada), harbors an epishelf lake, a rare type of ice-dependent ecosystem in which a layer of freshwater overlies marine water connected to the open ocean. This microbe-dominated ecosystem faces catastrophic change due to the deterioration of its ice environment related to warming temperatures. We produced the first assessment of viral abundance, diversity, and distribution in this vulnerable ecosystem and explored the niches available for viral taxa and the functional genes underlying their distribution. We found that the viral community in the freshwater layer was distinct from, and more diverse than, the community in the underlying seawater and contained a different set of putative auxiliary metabolic genes, including the sulfur starvation-linked gene tauD and the gene coding for patatin-like phospholipase. The halocline community resembled the freshwater more than the marine community, but harbored viral taxa unique to this layer. We observed distinct viral assemblages immediately below the halocline, at a depth that was associated with a peak of prasinophyte algae and the viral family Phycodnaviridae. We also assembled 15 complete circular genomes, including a putative Pelagibacter phage with a marine distribution. It appears that despite its isolated and precarious situation, the varied niches in this epishelf lake support a diverse viral community, highlighting the importance of characterizing underexplored microbiota in the Last Ice Area before these ecosystems undergo irreversible change. IMPORTANCE Viruses are key to understanding polar aquatic ecosystems, which are dominated by microorganisms. However, studies of viral communities are challenging to interpret because the vast majority of viruses are known only from sequence fragments, and their taxonomy, hosts, and genetic repertoires are unknown. Our study establishes a basis for comparison that will advance understanding of viral ecology in diverse global environments, particularly in the High Arctic. Rising temperatures in this region mean that researchers have limited time remaining to understand the biodiversity and biogeochemical cycles of ice-dependent environments and the consequences of these rapid, irreversible changes. The case of the Milne Fiord epishelf lake has special urgency because of the rarity of this type of "floating lake" ecosystem and its location in the Last Ice Area, a region of thick sea ice with global importance for conservation efforts.


Asunto(s)
Ecosistema , Microbiota , Regiones Árticas , Cubierta de Hielo , Lagos , Agua de Mar
2.
Antibiotics (Basel) ; 11(7)2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35884228

RESUMEN

Antimicrobial resistance (AMR) is continuing to grow across the world. Though often thought of as a mostly public health issue, AMR is also a major agricultural and environmental problem. As such, many researchers refer to it as the preeminent One Health issue. Aerial transport of antimicrobial-resistant bacteria via bioaerosols is still poorly understood. Recent work has highlighted the presence of antibiotic resistance genes in bioaerosols. Emissions of AMR bacteria and genes have been detected from various sources, including wastewater treatment plants, hospitals, and agricultural practices; however, their impacts on the broader environment are poorly understood. Contextualizing the roles of bioaerosols in the dissemination of AMR necessitates a multidisciplinary approach. Environmental factors, industrial and medical practices, as well as ecological principles influence the aerial dissemination of resistant bacteria. This article introduces an ongoing project assessing the presence and fate of AMR in bioaerosols across Canada. Its various sub-studies include the assessment of the emissions of antibiotic resistance genes from many agricultural practices, their long-distance transport, new integrative methods of assessment, and the creation of dissemination models over short and long distances. Results from sub-studies are beginning to be published. Consequently, this paper explains the background behind the development of the various sub-studies and highlight their shared aspects.

3.
Microbiol Resour Announc ; 9(10)2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139574

RESUMEN

We isolated two closely related strains that belong to the Myoviridae family and infect cyanobacteria in a shallow subarctic rock basin lake. Their host was identified as a member of the Synechococcus-Cyanobium complex. Sequenced genomes of the two phages were 244,930 bp and 243,633 bp. We describe their annotation and highlight some noteworthy features.

4.
Viruses ; 10(12)2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30486388

RESUMEN

The St. Lawrence hydrographic system includes freshwater, brackish, and marine habitats, and is the largest waterway in North America by volume. The food-webs in these habitats are ultimately dependent on phytoplankton. Viral lysis is believed to be responsible for a major part of phytoplankton mortality. To better understand their role, we characterized the diversity and distribution of two viral taxa infecting phytoplankton: the picornaviruses and phycodnaviruses. Our study focused on the estuary transition zone, which is an important nursery for invertebrates and fishes. Both viral taxa were investigated by PCR amplification of conserved molecular markers and next-generation sequencing at six sites, ranging from freshwater to marine. Our results revealed few shared viral phylotypes between saltwater and freshwater sites. Salinity appeared to be the primary determinant of viral community composition. Moreover, our analysis indicated that the viruses identified in this region of the St. Lawrence diverge from classified viruses and homologous published environmental virotypes. These results suggest that DNA and RNA viruses infecting phytoplankton are likely active in the estuary transition zone, and that this region harbors its own unique viral assemblages.


Asunto(s)
Estuarios , Fitoplancton/virología , Microbiología del Agua , Biodiversidad , Ecosistema , Ambiente , Evolución Molecular , Geografía , Metagenoma , Metagenómica/métodos , Phycodnaviridae/clasificación , Phycodnaviridae/genética , Filogenia , ARN Ribosómico 18S
5.
PLoS One ; 12(8): e0181413, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28813426

RESUMEN

The genera Plagiogramma and Dimeregramma are members of a small, but evolutionarily important group of diatoms, the "basal" araphids. They are sister to all other pennates, both araphid and raphid taxa. Thus, their phylogenetic position carries the potential for providing insights into the earliest pennates. We documented sexual reproduction, mating system and sex cell development in the first members of the "basal" araphid clade ever investigated. The mating system in all these species involved heterothally. It was, however, more complex in P. tsawwassen, where in addition to heterothallic clones, intraclonal and polysexual clones also exist. Auxospore development and wall structure was similar in all three species and demonstrated several characters also reported from "core" araphids. Of these, vigorous, pseudopodial motility of male secondary spermatocytes and gametes was most notable because it indicates that this character was likely present in the last common ancestor of all the pennates. Pseudopodial motility of the male sex cells might have afforded sufficient compensation and/or benefits to the emerging pennates for replacing flagellated sperm, present in centrics. The characters thus far uniquely present among our plagiogrammaceans but not reported from other pennates were: the "gametic" fusion between sex-compatible secondary spermatocytes, in some cases before completion of Meiosis II in males, transverse perizonial bands produced all together or in quick succession rather than being added to the auxospore apex one at a time, and expanding auxospores with 3-4 nuclei. An initial epivalve, similar in morphology to what in some diatoms had been interpreted as a "longitudinal" perizonium, may be more widespread among pennates than thus far appreciated. In addition, we discovered two species new to science (D. acutumontgo, P. tsawwassen), and refined delineation of P. staurophorum by including metric data from the original material.


Asunto(s)
Diatomeas/clasificación , Diatomeas/fisiología , Reproducción , Evolución Biológica , Pared Celular/ultraestructura , Diatomeas/genética , Diatomeas/ultraestructura , Células Germinativas , Filogenia
6.
Appl Environ Microbiol ; 81(6): 2137-48, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25595764

RESUMEN

Heterotrophic marine flagellates (HF) are ubiquitous in the world's oceans and represented in nearly all branches of the domain Eukaryota. However, the factors determining distributions of major taxonomic groups are poorly known. The Arctic Ocean is a good model environment for examining the distribution of functionally similar but phylogenetically diverse HF because the physical oceanography and annual ice cycles result in distinct environments that could select for microbial communities or favor specific taxa. We reanalyzed new and previously published high-throughput sequencing data from multiple studies in the Arctic Ocean to identify broad patterns in the distribution of individual taxa. HF accounted for fewer than 2% to over one-half of the reads from the water column and for up to 60% of reads from ice, which was dominated by Cryothecomonas. In the water column, many HF phylotypes belonging to Telonemia and Picozoa, uncultured marine stramenopiles (MAST), and choanoflagellates were geographically widely distributed. However, for two groups in particular, Telonemia and Cryothecomonas, some species level taxa showed more restricted distributions. For example, several phylotypes of Telonemia favored open waters with lower nutrients such as the Canada Basin and offshore of the Mackenzie Shelf. In summary, we found that while some Arctic HF were successful over a range of conditions, others could be specialists that occur under particular conditions. We conclude that tracking species level diversity in HF not only is feasible but also provides a potential tool for understanding the responses of marine microbial ecosystems to rapidly changing ice regimes.


Asunto(s)
Biota , Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Océanos y Mares , Filogeografía , Regiones Árticas , Canadá , Eucariontes/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
7.
J Phycol ; 49(2): 229-40, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27008512

RESUMEN

Global climate change is having profound impacts on polar ice with changes in the duration and extent of both land-fast ice and drift ice, which is part of the polar ice pack. Sea ice is a distinct habitat and the morphologically identifiable sympagic community living within sea ice can be readily distinguished from pelagic species. Sympagic metazoa and diatoms have been studied extensively since they can be identified using microscopy techniques. However, non-diatom eukaryotic cells living in ice have received much less attention despite taxa such as the dinoflagellate Polarella and the cercozoan Cryothecomonas being isolated from sea ice. Other small flagellates have also been reported, suggesting complex microbial food webs. Since smaller flagellates are fragile, often poorly preserved, and are difficult for non-experts to identify, we applied high throughput tag sequencing of the V4 region of the 18S rRNA gene to investigate the eukaryotic microbiome within the ice. The sea ice communities were diverse (190 taxa) and included many heterotrophic and mixotrophic species. Dinoflagellates (43 taxa), diatoms (29 taxa) and cercozoans (12 taxa) accounted for ~80% of the sequences. The sympagic communities living within drift ice and land-fast ice harbored taxonomically distinct communities and we highlight specific taxa of dinoflagellates and diatoms that may be indicators of land-fast and drift ice.

8.
J Eukaryot Microbiol ; 59(4): 291-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22703332

RESUMEN

Heterotrophic nanoflagellates (HNFs) are key components in microbial food webs, potentially influencing community composition via top-down control of their favored prey or host. Marine cercozoan Cryothecomonas species are parasitoid and predatory HNFs that have been reported from ice, sediments, and the water column. Although Cryothecomonas is frequently reported from Arctic and subarctic seas, factors determining its occurrence are not known. We investigated the temporal and geographic distribution of Cryothecomonas in Canadian Arctic seas during the summer and autumn periods from 2006 to 2010. We developed a Cryothecomonas-specific fluorescent in situ hybridization (FISH) probe targeting ribosomal 18S rRNA to estimate cell concentrations in natural and manipulated samples. Comparison of simple and partial correlation coefficients showed that salinity, depth, and overall community biomass are important factors determining Cryothecomonas abundance. We found no evidence of parasitism in our samples. Hybridized cells included individuals smaller than any formally described Cryothecomonas, suggesting the presence of novel taxa or unknown life stages in this genus. A positive relationship between Cryothecomonas abundance and ice and meltwater suggests that it is a sensitive indicator of ice melt in Arctic water columns.


Asunto(s)
Cercozoos/clasificación , Cercozoos/aislamiento & purificación , Variación Genética , Agua de Mar/parasitología , Regiones Árticas , Canadá , Cercozoos/genética , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Genes de ARNr , Datos de Secuencia Molecular , Filogeografía , ARN Protozoario/genética , ARN Ribosómico 18S/genética , Estaciones del Año , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...