Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(6): 3724-3730, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38743032

RESUMEN

A small series of copoly(α,l-glutamic acid/dl-allylglycine)s with the same chain length and allylglycine content (∼10 mol %) but different spatial distribution of allylglycine units was synthesized and subsequently glycosylated via thiol-ene chemistry. Dilute aqueous copolypeptide solutions (0.1 wt %, physiological saline) were analyzed by circular dichroism spectroscopy, dynamic light scattering, and cryogenic transmission electron microscopy. The copolypeptides adopted a random coil or α-helix conformation, depending on solution pH, and the glycosylated residues either distorted or enhanced the folding into an α-helix depending on their location and spatial distribution along the chain. However, regardless of their secondary structure and degree of charging, all partially glycosylated copolypeptides self-assembled into 3D spherical structures, supposedly driven by a hydrophilic effect promoting microphase separation into glucose-rich and glutamate-rich domains.


Asunto(s)
Solución Salina , Solución Salina/química , Ácido Glutámico/química , Glicosilación , Dicroismo Circular , Soluciones , Glicina/química , Concentración de Iones de Hidrógeno
2.
Protein Sci ; 33(5): e4989, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38659213

RESUMEN

Intrinsically disordered late embryogenesis abundant (LEA) proteins play a central role in the tolerance of plants and other organisms to dehydration brought upon, for example, by freezing temperatures, high salt concentration, drought or desiccation, and many LEA proteins have been found to stabilize dehydration-sensitive cellular structures. Their conformational ensembles are highly sensitive to the environment, allowing them to undergo conformational changes and adopt ordered secondary and quaternary structures and to participate in formation of membraneless organelles. In an interdisciplinary approach, we discovered how the functional diversity of the Arabidopsis thaliana LEA protein COR15A found in vitro is encoded in its structural repertoire, with the stabilization of membranes being achieved at the level of secondary structure and the stabilization of enzymes accomplished by the formation of oligomeric complexes. We provide molecular details on intra- and inter-monomeric helix-helix interactions, demonstrate how oligomerization is driven by an α-helical molecular recognition feature (α-MoRF) and provide a rationale that the formation of noncanonical, loosely packed, right-handed coiled-coils might be a recurring theme for homo- and hetero-oligomerization of LEA proteins.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas Intrínsecamente Desordenadas , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Congelación , Modelos Moleculares , Multimerización de Proteína , Estructura Secundaria de Proteína
3.
Nat Commun ; 15(1): 2792, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555362

RESUMEN

Plant photosynthesis contains two functional modules, the light-driven reactions in the thylakoid membrane and the carbon-fixing reactions in the chloroplast stroma. In nature, light availability for photosynthesis often undergoes massive and rapid fluctuations. Efficient and productive use of such variable light supply requires an instant crosstalk and rapid synchronization of both functional modules. Here, we show that this communication involves the stromal exposed C-terminus of the thylakoid K+-exchange antiporter KEA3, which regulates the ΔpH across the thylakoid membrane and therefore pH-dependent photoprotection. By combining in silico, in vitro, and in vivo approaches, we demonstrate that the KEA3 C-terminus senses the energy state of the chloroplast in a pH-dependent manner and regulates transport activity in response. Together our data pinpoint a regulatory feedback loop by which the stromal energy state orchestrates light capture and photoprotection via multi-level regulation of KEA3.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Tilacoides/metabolismo , Protones , Antiportadores/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fotosíntesis/fisiología , Cloroplastos/metabolismo , Luz
4.
Methods Mol Biol ; 2554: 199-229, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36178628

RESUMEN

With an estimate of hundred thousands of protein molecules per cell and the number of metabolites several orders of magnitude higher, protein-metabolite interactions are omnipresent. In vitro analyses are one of the main pillars on the way to establish a solid understanding of how these interactions contribute to maintaining cellular homeostasis. A repertoire of biophysical techniques is available by which protein-metabolite interactions can be quantitatively characterized in terms of affinity, specificity, and kinetics in a broad variety of solution environments. Several of those provide information on local or global conformational changes of the protein partner in response to ligand binding. This review chapter gives an overview of the state-of-the-art biophysical toolbox for the study of protein-metabolite interactions. It briefly introduces basic principles, highlights recent examples from the literature, and pinpoints promising future directions.


Asunto(s)
Proteínas , Fenómenos Biofísicos , Biofisica/métodos , Cinética , Ligandos , Unión Proteica , Proteínas/química
5.
J Exp Bot ; 73(19): 6525-6546, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35793147

RESUMEN

To deal with increasingly severe periods of dehydration related to global climate change, it becomes increasingly important to understand the complex strategies many organisms have developed to cope with dehydration and desiccation. While it is undisputed that late embryogenesis abundant (LEA) proteins play a key role in the tolerance of plants and many anhydrobiotic organisms to water limitation, the molecular mechanisms are not well understood. In this review, we summarize current knowledge of the physiological roles of LEA proteins and discuss their potential molecular functions. As these are ultimately linked to conformational changes in the presence of binding partners, post-translational modifications, or water deprivation, we provide a detailed summary of current knowledge on the structure-function relationship of LEA proteins, including their disordered state in solution, coil to helix transitions, self-assembly, and their recently discovered ability to undergo liquid-liquid phase separation. We point out the promising potential of LEA proteins in biotechnological and agronomic applications, and summarize recent advances. We identify the most relevant open questions and discuss major challenges in establishing a solid understanding of how these intriguing molecules accomplish their tasks as cellular sentinels at the limits of surviving water scarcity.


Asunto(s)
Deshidratación , Desarrollo Embrionario , Deshidratación/metabolismo , Agua/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Biomolecules ; 11(9)2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34572518

RESUMEN

Exendin-4 is a pharmaceutical peptide used in the control of insulin secretion. Structural information on exendin-4 and related peptides especially on the level of quaternary structure is scarce. We present the first published association equilibria of exendin-4 directly measured by static and dynamic light scattering. We show that exendin-4 oligomerization is pH dependent and that these oligomers are of low compactness. We relate our experimental results to a structural hypothesis to describe molecular details of exendin-4 oligomers. Discussion of the validity of this hypothesis is based on NMR, circular dichroism and fluorescence spectroscopy, and light scattering data on exendin-4 and a set of exendin-4 derived peptides. The essential forces driving oligomerization of exendin-4 are helix-helix interactions and interactions of a conserved hydrophobic moiety. Our structural hypothesis suggests that key interactions of exendin-4 monomers in the experimentally supported trimer take place between a defined helical segment and a hydrophobic triangle constituted by the Phe22 residues of the three monomeric subunits. Our data rationalize that Val19 might function as an anchor in the N-terminus of the interacting helix-region and that Trp25 is partially shielded in the oligomer by C-terminal amino acids of the same monomer. Our structural hypothesis suggests that the Trp25 residues do not interact with each other, but with C-terminal Pro residues of their own monomers.


Asunto(s)
Secuencia Conservada , Exenatida/química , Interacciones Hidrofóbicas e Hidrofílicas , Incretinas/química , Secuencia de Aminoácidos , Ácidos Grasos/metabolismo , Concentración de Iones de Hidrógeno , Modelos Moleculares , Péptidos/química , Estructura Secundaria de Proteína
7.
Methods Mol Biol ; 2156: 9-21, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32607971

RESUMEN

Quantitative assessment of freezing tolerance is essential to unravel plant adaptations to cold temperatures. Not only the survival of whole plants, but also impairment of detached leaves or small rosettes after a freeze-thaw cycle can be used to accurately quantify plant freezing tolerance in terms of LT50 values. Here we describe two methods to determine the freezing tolerance of detached leaves or rosettes using a full or selected set of freezing temperatures and an additional method using chlorophyll fluorescence as a different physiological parameter. Firstly, we illustrate how to assess the integrity of (predominantly) the plasma membrane during freezing using an electrolyte leakage assay. Secondly, we provide a chlorophyll fluorescence imaging protocol to determine the freezing tolerance of the photosynthetic apparatus.


Asunto(s)
Aclimatación , Clorofila/metabolismo , Electrólitos/metabolismo , Congelación , Hojas de la Planta/fisiología , Fenómenos Fisiológicos de las Plantas , Arabidopsis/fisiología , Bioensayo , Fluorescencia , Imagen Molecular/métodos , Fotosíntesis , Desarrollo de la Planta
8.
Int J Mol Sci ; 21(8)2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32316452

RESUMEN

The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Biología Computacional/métodos , Modelos Moleculares , Conformación Molecular , Simulación de Dinámica Molecular , Pliegue de Proteína , Estrés Fisiológico
9.
Mol Pharm ; 17(3): 965-978, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31968941

RESUMEN

Dual glucagon-like peptide-1/glucagon receptor agonists have emerged as promising candidates for the treatment of diabetes and obesity. Issues of degradation sensitivity and rapid renal clearance are addressed, for example, by the conjugation of peptides to fatty acid chains, promoting reversible albumin binding. We use combined dynamic and static light scattering to directly measure the self-assembly of a set of dual peptide agonists based on the exendin-4 structure with varying fatty acid chain lengths in terms of apparent molecular mass and hydrodynamic radius (RS). We use NMR spectroscopy to gain an insight into the molecular architecture of the assembly. We investigate conformational changes of the monomeric subunits resulting from peptide self-assembly and assembly stability as a function of the fatty acid chain length using circular dichroism and fluorescence spectroscopy. Our results demonstrate that self-assembly of the exendin-4-derived dual agonist peptides is essentially driven by hydrophobic interactions involving the conjugated acyl chains. The fatty acid chain length affects assembly equilibria and the assembly stability, although the peptide subunits in the assembly retain a dynamic secondary structure. The assembly architecture is characterized by juxtaposition of the fatty acyl side chains and a hydrophobic cluster of the peptide moiety. This cluster experiences local conformational changes in the assembly compared to the monomeric unit leading to a reduction in solvent exposure. The N-terminal half of the peptide and a C-terminal loop are not in contact with neighboring peptide subunits in the assemblies. Altogether, our study contributes to a thorough understanding of the association characteristics and the tendency toward self-assembly in response to lipidation. This is important not only to achieve the desired bioavailability but also with respect to the physical stability of peptide solutions.


Asunto(s)
Descubrimiento de Drogas/métodos , Exenatida/química , Exenatida/farmacología , Ácidos Grasos Volátiles/química , Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptores de Glucagón/agonistas , Acilación , Secuencia de Aminoácidos , Animales , Dicroismo Circular , Dispersión Dinámica de Luz , Interacciones Hidrofóbicas e Hidrofílicas , Lagartos/metabolismo , Espectroscopía de Resonancia Magnética , Peso Molecular , Estructura Secundaria de Proteína
10.
Phys Chem Chem Phys ; 21(34): 18727-18740, 2019 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-31424463

RESUMEN

The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an α-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas Intrínsecamente Desordenadas/química , Concentración Osmolar , Conformación Proteica , Dispersión del Ángulo Pequeño , Solventes/química , Rayos X
11.
Biomolecules ; 9(3)2019 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-30832369

RESUMEN

Cold-regulated (COR) 15A is an intrinsically disordered protein (IDP) from Arabidopsis thaliana important for freezing tolerance. During freezing-induced cellular dehydration, COR15A transitions from a disordered to mostly α-helical structure. We tested whether mutations that increase the helicity of COR15A also increase its protective function. Conserved glycine residues were identified and mutated to alanine. Nuclear magnetic resonance (NMR) spectroscopy was used to identify residue-specific changes in helicity for wildtype (WT) COR15A and the mutants. Circular dichroism (CD) spectroscopy was used to monitor the coil⁻helix transition in response to increasing concentrations of trifluoroethanol (TFE) and ethylene glycol. The impact of the COR15A mutants on the stability of model membranes during a freeze⁻thaw cycle was investigated by fluorescence spectroscopy. The results of these experiments showed the mutants had a higher content of α-helical structure and the increased α-helicity improved membrane stabilization during freezing. Comparison of the TFE- and ethylene glycol-induced coil⁻helix transitions support our conclusion that increasing the transient helicity of COR15A in aqueous solution increases its ability to stabilize membranes during freezing. Altogether, our results suggest the conserved glycine residues are important for maintaining the disordered structure of COR15A but are also compatible with the formation of α-helical structure during freezing induced dehydration.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/química , Glicina/metabolismo , Proteínas de Arabidopsis/aislamiento & purificación , Dicroismo Circular , Congelación , Resonancia Magnética Nuclear Biomolecular
12.
Methods Enzymol ; 611: 459-502, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30471696

RESUMEN

A sizeable proportion of active protein sequences lack structural motifs making them irresolvable by NMR and crystallography. Such intrinsically disordered proteins (IDPs) or regions (IDRs) play a major role in biological mechanisms. They are often involved in cell regulation processes, and by extension can be the perpetrator or signifier of disease. In light of their importance and the shortcomings of conventional methods of biophysical analysis to identify them and to describe their conformational variance, IDPs and IDRs have been termed "the dark proteome." In this chapter we describe the use of ion mobility-mass spectrometry (IM-MS) coupled with electrospray ionization to analyze the conformational diversity of IDPs. Using the LEA protein COR15A as an exemplar system and contrasting it with the behavior of myoglobin, we outline the methods for analyzing an IDP using nanoelectrospray ionization coupled with IM-MS, covering sample preparation, purification; optimization of mass spectrometry conditions and tuning parameters; data collection and analysis. Following this, we detail the use of a "toy" model that provides a predictive framework for the study of all proteins with ESI-IM-MS.


Asunto(s)
Proteínas Intrínsecamente Desordenadas/química , Espectrometría de Movilidad Iónica/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Algoritmos , Animales , Tampones (Química) , Diseño de Equipo , Humanos , Espectrometría de Movilidad Iónica/instrumentación , Conformación Proteica , Espectrometría de Masa por Ionización de Electrospray/instrumentación
13.
Biophys J ; 115(6): 968-980, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30195939

RESUMEN

Plants from temperate climates, such as the model plant Arabidopsis thaliana, are challenged with seasonal low temperatures that lead to increased freezing tolerance in fall in a process termed cold acclimation. Among other adaptations, this involves the accumulation of cold-regulated (COR) proteins, such as the intrinsically disordered chloroplast-localized protein COR15A. Together with its close homolog COR15B, it stabilizes chloroplast membranes during freezing. COR15A folds into amphipathic α-helices in the presence of high concentrations of low-molecular-mass crowders or upon dehydration. Under these conditions, the (partially) folded protein binds peripherally to membranes. In our study, we have used coarse-grained molecular dynamics simulations to elucidate the details of COR15A-membrane binding and its effects on membrane structure and dynamics. Simulation results indicate that at least partial folding of COR15A and the presence of highly unsaturated galactolipids in the membranes are necessary for efficient membrane binding. The bound protein is stabilized on the membrane by interactions of charged and polar amino acids with galactolipid headgroups and by interactions of hydrophobic amino acids with the upper part of the fatty acyl chains. Experimentally, the presence of liposomes made from a mixture of lipids mimicking chloroplast membranes induces additional folding in COR15A under conditions of partial dehydration, in agreement with the simulation results.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pliegue de Proteína , Arabidopsis , Glucolípidos/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica
14.
Viruses ; 10(6)2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29843473

RESUMEN

Gram-negative bacteria protect themselves with an outermost layer containing lipopolysaccharide (LPS). O-antigen-specific bacteriophages use tailspike proteins (TSP) to recognize and cleave the O-polysaccharide part of LPS. However, O-antigen composition and structure can be highly variable depending on the environmental conditions. It is important to understand how these changes may influence the early steps of the bacteriophage infection cycle because they can be linked to changes in host range or the occurrence of phage resistance. In this work, we have analyzed how LPS preparations in vitro trigger particle opening and DNA ejection from the E. coli podovirus HK620. Fluorescence-based monitoring of DNA release showed that HK620 phage particles in vitro ejected their genome at velocities comparable to those found for other podoviruses. Moreover, we found that HK620 irreversibly adsorbed to the LPS receptor via its TSP at restrictive low temperatures, without opening the particle but could eject its DNA at permissive temperatures. DNA ejection was solely stimulated by LPS, however, the composition of the O-antigen dictated whether the LPS receptor could start the DNA release from E. coli phage HK620 in vitro. This finding can be significant when optimizing bacteriophage mixtures for therapy, where in natural environments O-antigen structures may rapidly change.


Asunto(s)
ADN Viral/metabolismo , Lipopolisacáridos/farmacología , Podoviridae/efectos de los fármacos , Podoviridae/genética , Bacteriófago P22/genética , Escherichia coli/virología , Glicósido Hidrolasas , Temperatura , Proteínas de la Cola de los Virus/metabolismo
15.
Plant Biotechnol J ; 16(4): 939-950, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28929574

RESUMEN

Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions.


Asunto(s)
Biomarcadores , Sequías , Marcadores Genéticos , Solanum tuberosum/fisiología , Biomarcadores/metabolismo , Perfilación de la Expresión Génica , Aprendizaje Automático , Modelos Genéticos , Fitomejoramiento/métodos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Tubérculos de la Planta/genética , Tubérculos de la Planta/metabolismo , Reproducibilidad de los Resultados , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Almidón/genética , Almidón/metabolismo , Estrés Fisiológico
16.
Biophys J ; 113(3): 572-579, 2017 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-28793212

RESUMEN

Plants from temperate climate zones are able to increase their freezing tolerance during exposure to low, above-zero temperatures in a process termed cold acclimation. During this process, several cold-regulated (COR) proteins are accumulated in the cells. One of them is COR15A, a small, intrinsically disordered protein that contributes to leaf freezing tolerance by stabilizing cellular membranes. The isolated protein folds into amphipathic α-helices in response to increased crowding conditions, such as high concentrations of glycerol. Although there is evidence for direct COR15A-membrane interactions, the orientation and depth of protein insertion were unknown. In addition, although folding due to high osmolyte concentrations had been established, the folding response of the protein under conditions of gradual dehydration had not been investigated. Here we show, using Fourier transform infrared spectroscopy, that COR15A starts to fold into α-helices already under mild dehydration conditions (97% relative humidity (RH), corresponding to freezing at -3°C) and that folding gradually increases with decreasing RH. Neutron diffraction experiments at 97 and 75% RH established that the presence of COR15A had no significant influence on the structure of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) membranes. However, using deuterated POPC we could clearly establish that COR15A interacts with the membranes and penetrates below the headgroup region into the upper part of the fatty acyl chain region. This localization is in agreement with our hypothesis that COR15A-membrane interaction is at least, in part, driven by a hydrophobic interaction between the lipids and the hydrophobic face of the amphipathic protein α-helix.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Agua/metabolismo , Fosfatidilcolinas/metabolismo , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Propiedades de Superficie
17.
Pharm Res ; 34(11): 2270-2286, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28762200

RESUMEN

PURPOSE: Comparison of the dissociation kinetics of rapid-acting insulins lispro, aspart, glulisine and human insulin under physiologically relevant conditions. METHODS: Dissociation kinetics after dilution were monitored directly in terms of the average molecular mass using combined static and dynamic light scattering. Changes in tertiary structure were detected by near-UV circular dichroism. RESULTS: Glulisine forms compact hexamers in formulation even in the absence of Zn2+. Upon severe dilution, these rapidly dissociate into monomers in less than 10 s. In contrast, in formulations of lispro and aspart, the presence of Zn2+ and phenolic compounds is essential for formation of compact R6 hexamers. These slowly dissociate in times ranging from seconds to one hour depending on the concentration of phenolic additives. The disadvantage of the long dissociation times of lispro and aspart can be diminished by a rapid depletion of the concentration of phenolic additives independent of the insulin dilution. This is especially important in conditions similar to those after subcutaneous injection, where only minor dilution of the insulins occurs. CONCLUSION: Knowledge of the diverging dissociation mechanisms of lispro and aspart compared to glulisine will be helpful for optimizing formulation conditions of rapid-acting insulins.


Asunto(s)
Hipoglucemiantes/química , Insulina Regular Humana/química , Humanos , Inyecciones Subcutáneas , Insulina/análogos & derivados , Insulina/química , Insulina Aspart/química , Insulina Lispro/química , Insulina de Acción Corta , Cinética , Peso Molecular , Fenoles/química , Agregado de Proteínas , Estabilidad Proteica , Relación Estructura-Actividad , Zinc/química
18.
FEBS J ; 284(6): 919-936, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28109185

RESUMEN

Late embryogenesis abundant (LEA) proteins are related to cellular dehydration tolerance. Most LEA proteins are predicted to have no stable secondary structure in solution, i.e., to be intrinsically disordered proteins (IDPs), but they may acquire α-helical structure upon drying. In the model plant Arabidopsis thaliana, the LEA proteins COR15A and COR15B are highly induced upon cold treatment and are necessary for the plants to attain full freezing tolerance. Freezing leads to increased intracellular crowding due to dehydration by extracellular ice crystals. In vitro, crowding by high glycerol concentrations induced partial folding of COR15 proteins. Here, we have extended these investigations to two related proteins, LEA11 and LEA25. LEA25 is much longer than LEA11 and COR15A, but shares a conserved central sequence domain with the other two proteins. We have created two truncated versions of LEA25 (2H and 4H) to elucidate the structural and functional significance of this domain. Light scattering and CD spectroscopy showed that all five proteins were largely unstructured and monomeric in dilute solution. They folded in the presence of increasing concentrations of trifluoroethanol and glycerol. Additional folding was observed in the presence of glycerol and membranes. Fourier transform infra red spectroscopy revealed an interaction of the LEA proteins with membranes in the dry state leading to a depression in the gel to liquid-crystalline phase transition temperature. Liposome stability assays revealed a cryoprotective function of the proteins. The C- and N-terminal extensions of LEA25 were important in cryoprotection, as the central domain itself (2H, 4H) only provided a low level of protection.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Liposomas/química , Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Frío , Glicerol/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Liposomas/metabolismo , Conformación Proteica en Hélice alfa , Pliegue de Proteína , Relación Estructura-Actividad
19.
Cancer Res ; 77(5): 1188-1199, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28031227

RESUMEN

Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR.


Asunto(s)
Carcinoma de Células Escamosas/tratamiento farmacológico , Cetuximab/farmacología , Receptores ErbB/genética , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Animales , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/enzimología , Carcinoma de Células Escamosas/genética , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Neoplasias de Cabeza y Cuello/enzimología , Neoplasias de Cabeza y Cuello/genética , Humanos , Ratones , Ratones Endogámicos NOD , Polimorfismo de Nucleótido Simple , Distribución Aleatoria , Transducción de Señal , Carcinoma de Células Escamosas de Cabeza y Cuello , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Phys Chem Chem Phys ; 18(37): 25806-16, 2016 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-27255148

RESUMEN

The LEA (late embryogenesis abundant) proteins COR15A and COR15B from Arabidopsis thaliana are intrinsically disordered under fully hydrated conditions, but obtain α-helical structure during dehydration, which is reversible upon rehydration. To understand this unusual structural transition, both proteins were investigated by circular dichroism (CD) and molecular dynamics (MD) approaches. MD simulations showed unfolding of the proteins in water, in agreement with CD data obtained with both HIS-tagged and untagged recombinant proteins. Mainly intramolecular hydrogen bonds (H-bonds) formed by the protein backbone were replaced by H-bonds with water molecules. As COR15 proteins function in vivo as protectants in leaves partially dehydrated by freezing, unfolding was further assessed under crowded conditions. Glycerol reduced (40%) or prevented (100%) unfolding during MD simulations, in agreement with CD spectroscopy results. H-bonding analysis indicated that preferential exclusion of glycerol from the protein backbone increased stability of the folded state.


Asunto(s)
Proteínas de Arabidopsis/química , Arabidopsis/química , Secuencia de Aminoácidos , Dicroismo Circular , Enlace de Hidrógeno , Simulación de Dinámica Molecular , Extractos Vegetales/química , Hojas de la Planta/química , Estructura Secundaria de Proteína , Desplegamiento Proteico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...