Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Toxins (Basel) ; 13(6)2021 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-34071038

RESUMEN

The specificity and potency of venom components give them a unique advantage in developing various pharmaceutical drugs. Though venom is a cocktail of proteins, rarely are the synergy and association between various venom components studied. Understanding the relationship between various components of venom is critical in medical research. Using meta-analysis, we observed underlying patterns and associations in the appearance of the toxin families. For Crotalus, Dis has the most associations with the following toxins: PDE; BPP; CRL; CRiSP; LAAO; SVMP P-I and LAAO; SVMP P-III and LAAO. In Sistrurus venom, CTL and NGF have the most associations. These associations can predict the presence of proteins in novel venom and understand synergies between venom components for enhanced bioactivity. Using this approach, the need to revisit the classification of proteins as major components or minor components is highlighted. The revised classification of venom components is based on ubiquity, bioactivity, the number of associations, and synergies. The revised classification can be expected to trigger increased research on venom components, such as NGF, which have high biomedical significance. Using hierarchical clustering, we observed that the genera's venom compositions were similar, based on functional characteristics rather than phylogenetic relationships.


Asunto(s)
Venenos de Crotálidos/análisis , Proteínas/análisis , Animales , Crotalus/clasificación , Crotalus/genética , Filogenia , Toxinas Biológicas/análisis
2.
Appl Environ Microbiol ; 86(6)2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-31953329

RESUMEN

The antimicrobial activity and mechanism of silver ions (Ag+) have gained broad attention in recent years. However, dynamic studies are rare in this field. Here, we report our measurement of the effects of Ag+ ions on the dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy (sptPALM). It was found that treating the bacteria with Ag+ ions led to faster diffusive dynamics of H-NS proteins. Several techniques were used to understand the mechanism of the observed faster dynamics. Electrophoretic mobility shift assay on purified H-NS proteins indicated that Ag+ ions weaken the binding between H-NS proteins and DNA. Isothermal titration calorimetry confirmed that DNA and Ag+ ions interact directly. Our recently developed sensing method based on bent DNA suggested that Ag+ ions caused dehybridization of double-stranded DNA (i.e., dissociation into single strands). These evidences led us to a plausible mechanism for the observed faster dynamics of H-NS proteins in live bacteria when subjected to Ag+ ions: Ag+-induced DNA dehybridization weakens the binding between H-NS proteins and DNA. This work highlighted the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.IMPORTANCE As so-called "superbug" bacteria resistant to commonly prescribed antibiotics have become a global threat to public health in recent years, noble metals, such as silver, in various forms have been attracting broad attention due to their antimicrobial activities. However, most of the studies in the existing literature have relied on the traditional bioassays for studying the antimicrobial mechanism of silver; in addition, temporal resolution is largely missing for understanding the effects of silver on the molecular dynamics inside bacteria. Here, we report our study of the antimicrobial effect of silver ions at the nanoscale on the diffusive dynamics of histone-like nucleoid-structuring (H-NS) proteins in live bacteria using single-particle-tracking photoactivated localization microscopy. This work highlights the importance of dynamic study of single proteins in live cells for understanding the functions of antimicrobial agents in bacteria.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/metabolismo , Histonas/metabolismo , Plata/química , Ensayo de Cambio de Movilidad Electroforética , Proteínas de Escherichia coli/metabolismo , Iones/química
3.
J Biol Chem ; 294(12): 4412-4424, 2019 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-30670588

RESUMEN

Human interleukin-12 (hIL-12) is a heparin-binding cytokine whose activity was previously shown to be enhanced by heparin and other sulfated glycosaminoglycans. The current study investigated the mechanisms by which heparin increases hIL-12 activity. Using multiple human cell types, including natural killer cells, an IL-12 indicator cell line, and primary peripheral blood mononuclear and T cells, along with bioactivity, flow cytometry, and isothermal titration calorimetry assays, we found that heparin-dependent modulation of hIL-12 function correlates with several of heparin's biophysical characteristics, including chain length, sulfation level, and concentration. Specifically, only heparin molecules longer than eight saccharide units enhanced hIL-12 activity. Furthermore, heparin molecules with three sulfate groups per disaccharide unit outperformed heparin molecules with one or two sulfate groups per disaccharide unit in terms of enhanced hIL-12 binding and activity. Heparin also significantly reduced the EC50 value of hIL-12 by up to 11.8-fold, depending on the responding cell type. Cytokine-profiling analyses revealed that heparin affected the level, but not the type, of cytokines produced by lymphocytes in response to hIL-12. Interestingly, although murine IL-12 also binds heparin, heparin did not enhance its activity. Using the gathered data, we propose a model of hIL-12 stabilization in which heparin serves as a co-receptor enhancing the interaction between heterodimeric hIL-12 and its receptor subunits. The results of this study provide a foundation for further investigation of heparin's interactions with IL-12 family cytokines and for the use of heparin as an immunomodulatory agent.


Asunto(s)
Heparina/farmacología , Interleucina-12/farmacología , Animales , Fenómenos Biofísicos , Calorimetría , Citocinas/biosíntesis , Relación Dosis-Respuesta a Droga , Femenino , Citometría de Flujo , Células HEK293 , Heparina/química , Heparitina Sulfato/metabolismo , Humanos , Interleucina-12/metabolismo , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Receptores de Interleucina-2/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
4.
J Biol Chem ; 293(1): 28-46, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158266

RESUMEN

Defense responses of peanut (Arachis hypogaea) to biotic and abiotic stresses include the synthesis of prenylated stilbenoids. Members of this compound class show several protective activities in human disease studies, and the list of potential therapeutic targets continues to expand. Despite their medical and biological importance, the biosynthetic pathways of prenylated stilbenoids remain to be elucidated, and the genes encoding stilbenoid-specific prenyltransferases have yet to be identified in any plant species. In this study, we combined targeted transcriptomic and metabolomic analyses to discover prenyltransferase genes in elicitor-treated peanut hairy root cultures. Transcripts encoding five enzymes were identified, and two of these were functionally characterized in a transient expression system consisting of Agrobacterium-infiltrated leaves of Nicotiana benthamiana We observed that one of these prenyltransferases, AhR4DT-1, catalyzes a key reaction in the biosynthesis of prenylated stilbenoids, in which resveratrol is prenylated at its C-4 position to form arachidin-2, whereas another, AhR3'DT-1, added the prenyl group to C-3' of resveratrol. Each of these prenyltransferases was highly specific for stilbenoid substrates, and we confirmed their subcellular location in the plastid by fluorescence microscopy. Structural analysis of the prenylated stilbenoids suggested that these two prenyltransferase activities represent the first committed steps in the biosynthesis of a large number of prenylated stilbenoids and their derivatives in peanut. In summary, we have identified five candidate prenyltransferases in peanut and confirmed that two of them are stilbenoid-specific, advancing our understanding of this specialized enzyme family and shedding critical light onto the biosynthesis of bioactive stilbenoids.


Asunto(s)
Arachis/enzimología , Dimetilaliltranstransferasa/metabolismo , Sesquiterpenos/metabolismo , Estilbenos/metabolismo , Secuencia de Aminoácidos , Arachis/química , Arachis/genética , Arachis/metabolismo , Vías Biosintéticas , Dimetilaliltranstransferasa/análisis , Dimetilaliltranstransferasa/genética , Filogenia , Raíces de Plantas/química , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Resveratrol , Metabolismo Secundario , Alineación de Secuencia , Especificidad por Sustrato , Transcriptoma , Fitoalexinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...