Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Tryptophan Res ; 10: 1178646917694600, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28469469

RESUMEN

OBJECTIVE: Type 2 diabetes (T2D) is the primary case of chronic kidney disease (CKD). Inflammation is associated with metabolic dysregulation in patients with T2D and CKD. Tryptophan (TRP) metabolism may have relevance to the CKD outcomes and associated symptoms. We investigated the relationships of TRP metabolism with inflammatory markers in patients with T2D and CKD. METHODS: Data were collected from a well-characterized cohort of type 2 diabetic individuals with all stages of CKD, including patients on hemodialysis. Key TRP metabolites (kynurenine [KYN], kynurenic acid [KYNA], and quinolinic acid [QA]), proinflammatory cytokines (tumor necrosis factor-α [TNF-α] and interleukin-6 [IL-6]), and C-reactive protein were measured in plasma. The KYN/TRP ratio was utilized as a surrogate marker for indoleamine 2,3-dioxygenase 1 (IDO1) enzyme activity. RESULTS: There was a significant inverse association between circulating TRP level and stages of CKD (P< 0.0001). Downstream bioactive TRP metabolites KYN, KYNA, and QA were positively and robustly correlated with the severity of kidney disease (P < 0.0001). In multiple linear regression, neither TNF-α nor IL-6 was independently related to KYN/TRP ratio after adjusting for estimated glomerular filtration rate (eGFR). Only TNF-α was independently related to KYN after taking into account the effect of eGFR. CONCLUSIONS: Chronic kidney disease secondary to T2D may be associated with accumulation of toxic TRP metabolites due to both inflammation and impaired kidney function. Future longitudinal studies to determine whether the accumulation of KYN directly contributes to CKD progression and associated symptoms in patients with T2D are warranted.

2.
PLoS One ; 12(5): e0176767, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28493993

RESUMEN

BACKGROUND: The Na-H exchanger [NHE] performs an electroneutral uptake of NaCl and water from the lumen of the gastrointestinal tract. There are several distinct NHE isoforms, some of which show an altered expression in the inflammatory bowel diseases (IBD). In this study, we examined a role of NHE-2 in experimental colitis. METHODS: Colitis was induced in male Sprague-Dawley rats by intra-rectal administration of trinitrobenzenesulphonic acid (TNBS). On day 6 post-TNBS, the animals were sacrificed, colonic and ileal segments were taken out, cleaned with phosphate buffered saline and used in this study. RESULTS: There was a significant decrease in the level of NHE-2 protein as measured by ECL western blot analysis and confocal immunofluorescence microscopy. The levels of NHE-2 mRNA and heteronuclear RNA measured by an end-point RT-PCR and a real time PCR were also decreased significantly in the inflamed colon. However, there was no change in the level of NHE-2 protein in response to in vitro TNF-α treatment of uninflamed rat colonic segment. These changes were selective and localized to the colon as actin, an internal control, remained unchanged. Confocal immunofluorescence microscopy revealed co-localization of NHE-2 and NHE-3 in the brush borders of colonic epithelial cells. Inflamed colon showed a significant increase in myeloperoxidase activity and colon hypertrophy. In addition, there was a significant decrease in body weight and goblet cells' mucin staining in the TNBS treated colon. These changes were not conspicuous in the non-inflamed ileum. CONCLUSIONS: These findings demonstrate suppression of NHE-2 expression on the brush borders in the colonic epithelial cells which is regulated transcriptionally. However a role of TNF-α in the regulation of NHE-2 is discounted in the present model of colitis. This decrease in the NHE-2 expression will lead to a loss of electrolyte and water uptake thus contributing to the symptoms associated with IBD.


Asunto(s)
Colitis/metabolismo , Regulación hacia Abajo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Animales , Western Blotting , Peso Corporal/efectos de los fármacos , Colon/efectos de los fármacos , Colon/metabolismo , Colon/patología , Regulación hacia Abajo/efectos de los fármacos , Electroforesis en Gel de Agar , Células Caliciformes/efectos de los fármacos , Células Caliciformes/patología , Hipertrofia , Íleon/efectos de los fármacos , Íleon/metabolismo , Íleon/patología , Masculino , Microscopía Fluorescente , Peroxidasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Intercambiadores de Sodio-Hidrógeno/genética , Coloración y Etiquetado , Factor de Necrosis Tumoral alfa/farmacología
3.
BMC Proc ; 10(Suppl 7): 71-77, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27980614

RESUMEN

BACKGROUND: The Genetic Analysis Workshops (GAW) are a forum for development, testing, and comparison of statistical genetic methods and software. Each contribution to the workshop includes an application to a specified data set. Here we describe the data distributed for GAW19, which focused on analysis of human genomic and transcriptomic data. METHODS: GAW19 data were donated by the T2D-GENES Consortium and the San Antonio Family Heart Study and included whole genome and exome sequences for odd-numbered autosomes, measures of gene expression, systolic and diastolic blood pressures, and related covariates in two Mexican American samples. These two samples were a collection of 20 large families with whole genome sequence and transcriptomic data and a set of 1943 unrelated individuals with exome sequence. For each sample, simulated phenotypes were constructed based on the real sequence data. 'Functional' genes and variants for the simulations were chosen based on observed correlations between gene expression and blood pressure. The simulations focused primarily on additive genetic models but also included a genotype-by-medication interaction. A total of 245 genes were designated as 'functional' in the simulations with a few genes of large effect and most genes explaining < 1 % of the trait variation. An additional phenotype, Q1, was simulated to be correlated among related individuals, based on theoretical or empirical kinship matrices, but was not associated with any sequence variants. Two hundred replicates of the phenotypes were simulated. The GAW19 data are an expansion of the data used at GAW18, which included the family-based whole genome sequence, blood pressure, and simulated phenotypes, but not the gene expression data or the set of 1943 unrelated individuals with exome sequence.

4.
Cardiorenal Med ; 6(4): 301-6, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27648011

RESUMEN

BACKGROUND/AIM: Toll-like receptor 4 (TLR4) is one of the regulators of the innate immune response. Genetic variations in TLR4 have been associated with inflammatory diseases, including type 2 diabetes. However, to our knowledge, there are no reports on the role of variations in TLR4 in chronic kidney disease susceptibility. The objective of this study is to determine whether the genetic variants in TLR4 are associated with the estimated glomerular filtration rate (eGFR), a measure of renal function. METHODS: To evaluate the association between TLR4 variants and eGFR, we used data obtained from 434 Mexican American participants from the San Antonio Family Diabetes/Gallbladder Study. GFR was estimated using the Modification of Diet in Renal Disease formula. The Asp(299)Gly (rs4986790) and Thr(399)Ile (rs4986791) variants of TLR4 were genotyped using the TaqMan assay. Association analyses between genotypes and eGFR were performed using the measured genotype approach. RESULTS: Of the two genetic markers examined for association, only the Asp(299)Gly variant of TLR4 exhibited a nominally significant association with eGFR (p = 0.025) after accounting for the covariate effects of age and sex terms, diabetes, duration of diabetes, systolic blood pressure, body mass index, and antihypertensive treatment. Carriers of Gly299 had significantly decreased eGFR values. Although, the Thr(399)Ile variant failed to exhibit a statistically significant association with eGFR, the carriers of Ile399, however, showed a trend towards decrease in eGFR. CONCLUSION: We show for the first time that Asp(299)Gly variants of TLR4 are associated with decrease in renal function in Mexican Americans.

5.
BMC Genomics ; 17: 325, 2016 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-27142425

RESUMEN

BACKGROUND: The presence of population structure in a sample may confound the search for important genetic loci associated with disease. Our four samples in the Family Investigation of Nephropathy and Diabetes (FIND), European Americans, Mexican Americans, African Americans, and American Indians are part of a genome- wide association study in which population structure might be particularly important. We therefore decided to study in detail one component of this, individual genetic ancestry (IGA). From SNPs present on the Affymetrix 6.0 Human SNP array, we identified 3 sets of ancestry informative markers (AIMs), each maximized for the information in one the three contrasts among ancestral populations: Europeans (HAPMAP, CEU), Africans (HAPMAP, YRI and LWK), and Native Americans (full heritage Pima Indians). We estimate IGA and present an algorithm for their standard errors, compare IGA to principal components, emphasize the importance of balancing information in the ancestry informative markers (AIMs), and test the association of IGA with diabetic nephropathy in the combined sample. RESULTS: A fixed parental allele maximum likelihood algorithm was applied to the FIND to estimate IGA in four samples: 869 American Indians; 1385 African Americans; 1451 Mexican Americans; and 826 European Americans. When the information in the AIMs is unbalanced, the estimates are incorrect with large error. Individual genetic admixture is highly correlated with principle components for capturing population structure. It takes ~700 SNPs to reduce the average standard error of individual admixture below 0.01. When the samples are combined, the resulting population structure creates associations between IGA and diabetic nephropathy. CONCLUSIONS: The identified set of AIMs, which include American Indian parental allele frequencies, may be particularly useful for estimating genetic admixture in populations from the Americas. Failure to balance information in maximum likelihood, poly-ancestry models creates biased estimates of individual admixture with large error. This also occurs when estimating IGA using the Bayesian clustering method as implemented in the program STRUCTURE. Odds ratios for the associations of IGA with disease are consistent with what is known about the incidence and prevalence of diabetic nephropathy in these populations.


Asunto(s)
Negro o Afroamericano/genética , Nefropatías Diabéticas/genética , Indígenas Norteamericanos/genética , Americanos Mexicanos/genética , Polimorfismo de Nucleótido Simple , Población Blanca/genética , Algoritmos , Mapeo Cromosómico , Nefropatías Diabéticas/etnología , Marcadores Genéticos/genética , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo/métodos , Humanos , Funciones de Verosimilitud , Modelos Genéticos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Análisis de Componente Principal , Estados Unidos/etnología
6.
PLoS Genet ; 11(8): e1005352, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26305897

RESUMEN

Diabetic kidney disease (DKD) is the most common etiology of chronic kidney disease (CKD) in the industrialized world and accounts for much of the excess mortality in patients with diabetes mellitus. Approximately 45% of U.S. patients with incident end-stage kidney disease (ESKD) have DKD. Independent of glycemic control, DKD aggregates in families and has higher incidence rates in African, Mexican, and American Indian ancestral groups relative to European populations. The Family Investigation of Nephropathy and Diabetes (FIND) performed a genome-wide association study (GWAS) contrasting 6,197 unrelated individuals with advanced DKD with healthy and diabetic individuals lacking nephropathy of European American, African American, Mexican American, or American Indian ancestry. A large-scale replication and trans-ethnic meta-analysis included 7,539 additional European American, African American and American Indian DKD cases and non-nephropathy controls. Within ethnic group meta-analysis of discovery GWAS and replication set results identified genome-wide significant evidence for association between DKD and rs12523822 on chromosome 6q25.2 in American Indians (P = 5.74x10-9). The strongest signal of association in the trans-ethnic meta-analysis was with a SNP in strong linkage disequilibrium with rs12523822 (rs955333; P = 1.31x10-8), with directionally consistent results across ethnic groups. These 6q25.2 SNPs are located between the SCAF8 and CNKSR3 genes, a region with DKD relevant changes in gene expression and an eQTL with IPCEF1, a gene co-translated with CNKSR3. Several other SNPs demonstrated suggestive evidence of association with DKD, within and across populations. These data identify a novel DKD susceptibility locus with consistent directions of effect across diverse ancestral groups and provide insight into the genetic architecture of DKD.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Nefropatías Diabéticas/genética , Negro o Afroamericano/genética , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/etnología , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Hispánicos o Latinos/genética , Humanos , Indígenas Norteamericanos/genética , Proteínas de Unión al ARN/genética , Estados Unidos , Población Blanca/genética
7.
J Biomed Sci ; 22: 23, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25885044

RESUMEN

BACKGROUND: The estimated glomerular filtration rate (eGFR) is a well-known measure of kidney function and is commonly used for the diagnosis and management of patients with chronic kidney disease. The inter-individual variation in eGFR has significant genetic component. However, the identification of underlying genetic susceptibility variants has been challenging. In an attempt to identify and characterize susceptibility genetic variant(s) we previously identified the strongest evidence for linkage of eGFR occurring on chromosome 9q21 in the Mexican American participants of San Antonio Family Heart Study (SAFHS). The objective of the present study was to examine whether the common genetic variants in Neurotrophic Tyrosine Receptor Kinase 2 (NTRK2), a positional candidate gene on 9q21, contribute to variation in eGFR. RESULTS: Twelve tagging single nucleotide polymorphisms (SNPs) across the NTRK2 gene region were selected (r2 ≥ 0.80, minor allele frequency of ≥ 0.05) from the Hapmap database. SNPs were genotyped by TaqMan assay in the 848 Mexican American subjects participated in the SAFHS. Association analysis between the genotypes and eGFR (estimated by the Modification of Diet in Renal Disease equation) were performed by measured genotype approach as implemented in the program SOLAR. Of the 12 common genetic variants examined, the rs1036915 (located in 3'UTR) and rs1187274 (located in intron-14), present in perfect linkage disequilibrium, exhibited an association (P = 0.017) with eGFR after accounting for the effects of age, sex, diabetes, diabetes duration, systolic blood pressure and blood pressure medication. The carriers of minor allele of rs1036915 (G; 38%) had increased eGFR (104 ± 25 ml/min/1.73 m(2)) in comparison to the carriers of major allele A (98 ± 25 ml/min/1.73 m(2)). CONCLUSION: Together, our results suggest for the first time that the genetic variants in NTRK2 may regulate eGFR.


Asunto(s)
Predisposición Genética a la Enfermedad/epidemiología , Tasa de Filtración Glomerular , Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Receptor trkB/genética , Adulto , Femenino , Marcadores Genéticos , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Americanos Mexicanos , Persona de Mediana Edad , Receptor trkB/metabolismo , Texas/epidemiología
8.
PLoS One ; 8(12): e81888, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24358131

RESUMEN

OBJECTIVE: Estimated glomerular filtration rate (eGFR), a measure of kidney function, is heritable, suggesting that genes influence renal function. Genes that influence eGFR have been identified through genome-wide association studies. However, family-based linkage approaches may identify loci that explain a larger proportion of the heritability. This study used genome-wide linkage and association scans to identify quantitative trait loci (QTL) that influence eGFR. METHODS: Genome-wide linkage and sparse association scans of eGFR were performed in families ascertained by probands with advanced diabetic nephropathy (DN) from the multi-ethnic Family Investigation of Nephropathy and Diabetes (FIND) study. This study included 954 African Americans (AA), 781 American Indians (AI), 614 European Americans (EA) and 1,611 Mexican Americans (MA). A total of 3,960 FIND participants were genotyped for 6,000 single nucleotide polymorphisms (SNPs) using the Illumina Linkage IVb panel. GFR was estimated by the Modification of Diet in Renal Disease (MDRD) formula. RESULTS: The non-parametric linkage analysis, accounting for the effects of diabetes duration and BMI, identified the strongest evidence for linkage of eGFR on chromosome 20q11 (log of the odds [LOD] = 3.34; P = 4.4 × 10(-5)) in MA and chromosome 15q12 (LOD = 2.84; P = 1.5 × 10(-4)) in EA. In all subjects, the strongest linkage signal for eGFR was detected on chromosome 10p12 (P = 5.5 × 10(-4)) at 44 cM near marker rs1339048. A subsequent association scan in both ancestry-specific groups and the entire population identified several SNPs significantly associated with eGFR across the genome. CONCLUSION: The present study describes the localization of QTL influencing eGFR on 20q11 in MA, 15q21 in EA and 10p12 in the combined ethnic groups participating in the FIND study. Identification of causal genes/variants influencing eGFR, within these linkage and association loci, will open new avenues for functional analyses and development of novel diagnostic markers for DN.


Asunto(s)
Nefropatías Diabéticas/genética , Ligamiento Genético , Tasa de Filtración Glomerular/genética , Enfermedades Renales/genética , Polimorfismo de Nucleótido Simple , Negro o Afroamericano/genética , Anciano , Femenino , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Genotipo , Humanos , Indígenas Norteamericanos/genética , Masculino , Americanos Mexicanos/genética , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Población Blanca/genética
9.
Mol Biol Rep ; 40(10): 5769-79, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24057238

RESUMEN

The rising global epidemic of diabetic nephropathy (DN) will likely lead to increase in the prevalence of cardiovascular morbidity and mortality posing a serious burden for public health care. Despite greater understanding of the etiology of diabetes and the development of novel treatment strategies to control blood glucose levels, the prevalence and incidence rate of DN is increasing especially in minority populations including Mexican-Americans. Mexican-Americans with type 2 diabetes (T2DM) are three times more likely to develop microalbuminuria, and four times more likely to develop clinical proteinuria compared to non-Hispanic whites. Furthermore, Mexican-Americans have a sixfold increased risk of developing renal failure secondary to T2DM compared to Caucasians. Prevention and better treatment of DN should be a high priority for both health-care organizations and society at large. Pathogenesis of DN is multi-factorial. Familial clustering of DN-related traits in MAs show that DN and related traits are heritable and that genes play a susceptibility role. While, there has been some progress in identifying genes which when mutated influence an individual's risk, major gene(s) responsible for DN are yet to be identified. Knowledge of the genetic causes of DN is essential for elucidation of its mechanisms, and for adequate classification, prognosis, and treatment. Self-identification and collaboration among researchers with suitable genomic and clinical data for meta-analyses in Mexican-Americans is critical for progress in replicating/identifying DN risk genes in this population. This paper reviews the approaches and recent efforts made to identify genetic variants contributing to risk for DN and related phenotypes in the Mexican-American population.


Asunto(s)
Nefropatías Diabéticas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Americanos Mexicanos/genética , Carácter Cuantitativo Heredable , Nefropatías Diabéticas/fisiopatología , Ligamiento Genético , Humanos
10.
Diabetes ; 61(9): 2385-93, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22617042

RESUMEN

The objective of this study is to identify and characterize the genetic variants related to the glomerular filtration rate (GFR) linkage on 2q37. Of the positional candidate genes, we selected IRS1 and resequenced its 2-kb promoter region and exons for sequence variants in 32 subjects. A total of 11 single nucleotide polymorphisms (SNPs) were identified. To comprehensively cover the 59-kb-long intron-1, eight additional tagging SNPs were selected from the HapMap. All the 19 SNPs were genotyped by TaqMan Assay in the entire data set (N = 670; 39 families). Association analyses between the SNPs and GFR and type 2 diabetes-related traits were performed using the measured genotype approach. Of the SNPs examined for association, only the Gly(972)Arg variant of IRS1 exhibited a significant association with GFR (P = 0.0006) and serum triglycerides levels (P = 0.003), after accounting for trait-specific covariate effects. Carriers of Arg972 had significantly decreased GFR values. Gly(972)Arg contributed to 26% of the linkage signal on 2q. Expression of IRS1 mutant Arg972 in human mesangial cells significantly reduced the insulin-stimulated phosphorylation of IRS1 and Akt kinase. Taken together, the data provide the first evidence that genetic variation in IRS1 may influence variation in GFR probably through impaired insulin receptor signaling.


Asunto(s)
Tasa de Filtración Glomerular/genética , Proteínas Sustrato del Receptor de Insulina/genética , Adulto , Diabetes Mellitus Tipo 2/genética , Femenino , Genotipo , Humanos , Insulina , Desequilibrio de Ligamiento , Masculino , Americanos Mexicanos/genética , Persona de Mediana Edad , Fenotipo , Polimorfismo de Nucleótido Simple , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/fisiología , Transducción de Señal/genética
11.
Clin Nephrol ; 77(4): 332-44, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22445478

RESUMEN

The incidence of diabetic nephropathy (DN) is growing rapidly worldwide as a consequence of the rising prevalence of Type 2 diabetes mellitus (T2DM). Among U.S. ethnic groups, Mexican Americans have a disproportionately high incidence and prevalence of DN and associated end-stage renal disease (ESRD). In communities bordering Mexico, as many as 90% of Mexican American patients with ESRD also suffer from T2DM compared to only 50% of non-Hispanic Whites (NHW). Both socio-economic factors and genetic predisposition appear to have a strong influence on this association. In addition, certain pathogenetic and clinical features of T2DM and DN are different in Mexican Americans compared to NHW, raising questions as to whether the diagnostic and treatment strategies that are standard practice in the NHW patient population may not be applicable in Mexican Americans. This article reviews the epidemiology of DN in Mexican Americans, describes the pathophysiology and associated risk factors, and identifies gaps in our knowledge and understanding that needs to be addressed by future investigations.


Asunto(s)
Diabetes Mellitus Tipo 2/epidemiología , Nefropatías Diabéticas/epidemiología , Fallo Renal Crónico/epidemiología , Americanos Mexicanos/estadística & datos numéricos , Obesidad/epidemiología , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/complicaciones , Nefropatías Diabéticas/complicaciones , Humanos , Incidencia , Fallo Renal Crónico/complicaciones , Obesidad/complicaciones , Pobreza , Prevalencia , Factores de Riesgo , Texas/epidemiología , Población Blanca/estadística & datos numéricos
12.
Nature ; 482(7383): 98-102, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22266938

RESUMEN

Hypertension affects one billion people and is a principal reversible risk factor for cardiovascular disease. Pseudohypoaldosteronism type II (PHAII), a rare Mendelian syndrome featuring hypertension, hyperkalaemia and metabolic acidosis, has revealed previously unrecognized physiology orchestrating the balance between renal salt reabsorption and K(+) and H(+) excretion. Here we used exome sequencing to identify mutations in kelch-like 3 (KLHL3) or cullin 3 (CUL3) in PHAII patients from 41 unrelated families. KLHL3 mutations are either recessive or dominant, whereas CUL3 mutations are dominant and predominantly de novo. CUL3 and BTB-domain-containing kelch proteins such as KLHL3 are components of cullin-RING E3 ligase complexes that ubiquitinate substrates bound to kelch propeller domains. Dominant KLHL3 mutations are clustered in short segments within the kelch propeller and BTB domains implicated in substrate and cullin binding, respectively. Diverse CUL3 mutations all result in skipping of exon 9, producing an in-frame deletion. Because dominant KLHL3 and CUL3 mutations both phenocopy recessive loss-of-function KLHL3 mutations, they may abrogate ubiquitination of KLHL3 substrates. Disease features are reversed by thiazide diuretics, which inhibit the Na-Cl cotransporter in the distal nephron of the kidney; KLHL3 and CUL3 are expressed in this location, suggesting a mechanistic link between KLHL3 and CUL3 mutations, increased Na-Cl reabsorption, and disease pathogenesis. These findings demonstrate the utility of exome sequencing in disease gene identification despite the combined complexities of locus heterogeneity, mixed models of transmission and frequent de novo mutation, and establish a fundamental role for KLHL3 and CUL3 in blood pressure, K(+) and pH homeostasis.


Asunto(s)
Proteínas Portadoras/genética , Proteínas Cullin/genética , Hipertensión/genética , Mutación/genética , Seudohipoaldosteronismo/genética , Desequilibrio Hidroelectrolítico/genética , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Presión Sanguínea/genética , Proteínas Portadoras/química , Estudios de Cohortes , Proteínas Cullin/química , Electrólitos , Exones/genética , Femenino , Perfilación de la Expresión Génica , Genes Dominantes/genética , Genes Recesivos/genética , Genotipo , Homeostasis/genética , Humanos , Concentración de Iones de Hidrógeno , Hipertensión/complicaciones , Hipertensión/fisiopatología , Masculino , Ratones , Proteínas de Microfilamentos , Modelos Moleculares , Datos de Secuencia Molecular , Fenotipo , Potasio/metabolismo , Seudohipoaldosteronismo/complicaciones , Seudohipoaldosteronismo/fisiopatología , Cloruro de Sodio/metabolismo , Desequilibrio Hidroelectrolítico/complicaciones , Desequilibrio Hidroelectrolítico/fisiopatología
13.
Clin Chim Acta ; 412(23-24): 2058-62, 2011 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-21439949

RESUMEN

BACKGROUND: Evidence for linkage of albuminuria to GABRB3 marker region on chromosome 15q12 was previously reported in Mexican Americans. The objective of this study is to scan a positional candidate gene, Transient Receptor Potential cation channel, subfamily M 1 (TRPM1), for genetic variants that may contribute to the variation in albumin-to-creatinine ratio (ACR). METHODS: To identify the sequence variants, the exons and 2 kb putative promoter region of TRPM1 were PCR amplified and sequenced in 32 selected individuals. Identified variants were genotyped in the entire data set (N=670; 39 large families) by TaqMan assays. Association analyses between the sequence variants and ACR, type 2 diabetes (T2DM) and related phenotypes were carried out using a measured genotype approach as implemented in the program SOLAR. RESULTS: Sequencing analysis identified 18 single nucleotide polymorphisms (SNPs) including 8 SNPs in the coding regions, 7 SNPs in the promoter region and 3 SNPs in introns. Of the 8 SNPs identified in the coding regions, 3 were non synonymous [Met(1)Thr, Ser(32)Asn, Val(1395)Ile] and one SNP caused stop codon (Glu1375/*). Of the SNPs examined, none of them exhibited statistically significant association with ACR after accounting for the effect of age, sex, diabetes, duration of diabetes, systolic blood pressure and anti-hypertensive medications. However, a SNP (rs11070811) located in the putative promoter region showed a modest association with triglycerides levels (P=0.039). CONCLUSION: The present investigation found no evidence for an association between sequence variation at the TRPM1 gene and ACR in Mexican Americans, although it appears to have modest influence on T2DM risk factors.


Asunto(s)
Albuminuria/genética , Canales Catiónicos TRPM/genética , Anciano , Exones , Femenino , Humanos , Masculino , Americanos Mexicanos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
14.
Hum Hered ; 70(2): 97-101, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20606456

RESUMEN

OBJECTIVE: Human 8-oxoguanine glycosylase 1 (OGG1) excises oxidatively damaged promutagenic base 8-oxoguanine, a lesion previously observed in a rat model of type 2 diabetes (T2DM). The objective of the present study is to determine whether genetic variation in OGG1 is associated with type 2 diabetes (T2DM) in a Mexican American cohort. METHODS: Ten SNPs including two tagging SNPs (rs1052133, rs2072668) across the OGG1 gene region were selected from the Hapmap database and genotyped in the entire cohort (n = 670; 29% diabetes; 39 families) by TaqMan assay. Association analyses between the SNPs and T2DM were performed using the measured genotype approach as implemented in the program SOLAR. RESULTS: Of the ten SNPs genotyped, only five were polymorphic. The minor allele frequencies of these 5 SNPs ranged from 1-38%. Of the SNPs examined for association, the Ser(326)Cys (rs1052133) exhibited significant association with T2DM (p = 0.016) after accounting for age and sex effects. Another intronic variant (rs2072668), which was in strong linkage disequilibrium (r(2) = 0.96) with Ser(326)Cys also exhibited significant association with T2DM (p = 0.031). CONCLUSIONS: These results suggest for the first time that the variants in OGG1 could influence diabetes risk in these Mexican American families and support a role for alterations of OGG1 in the pathogenesis of T2DM.


Asunto(s)
ADN Glicosilasas/genética , Diabetes Mellitus Tipo 2/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Americanos Mexicanos/genética , Polimorfismo de Nucleótido Simple/genética , Adulto , Femenino , Humanos , Desequilibrio de Ligamiento/genética , Masculino , Texas
15.
Diabetes Metab Res Rev ; 25(8): 740-7, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19795399

RESUMEN

BACKGROUND: Previous studies have shown that in addition to environmental influences, type 2 diabetes mellitus (T2DM) has a strong genetic component. The goal of the current study is to identify regions of linkage for T2DM in ethnically diverse populations. METHODS: Phenotypic and genotypic data were obtained from African American (AA; total number of individuals [N] = 1004), American Indian (AI; N = 883), European American (EA; N = 537), and Mexican American (MA; N = 1634) individuals from the Family Investigation of Nephropathy and Diabetes. Non-parametric linkage analysis, using an average of 4404 SNPs, was performed in relative pairs affected with T2DM in each ethnic group. In addition, family-based tests were performed to detect association with T2DM. RESULTS: Statistically significant evidence for linkage was observed on chromosome 4q21.1 (LOD = 3.13; genome-wide p = 0.04) in AA. In addition, a total of 11 regions showed suggestive evidence for linkage (estimated at LOD > 1.71), with the highest LOD scores on chromosomes 12q21.31 (LOD = 2.02) and 22q12.3 (LOD = 2.38) in AA, 2p11.1 (LOD = 2.23) in AI, 6p12.3 (LOD = 2.77) in EA, and 13q21.1 (LOD = . 2.24) in MA. While no region overlapped across all ethnic groups, at least five loci showing LOD > 1.71 have been identified in previously published studies. CONCLUSIONS: The results from this study provide evidence for the presence of genes affecting T2DM on chromosomes 4q, 12q, and 22q in AA; 6p in EA; 2p in AI; and 13q in MA. The strong evidence for linkage on chromosome 4q in AA provides important information given the paucity of diabetes genetic studies in this population.


Asunto(s)
Negro o Afroamericano/genética , Cromosomas Humanos Par 4/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Adulto , Anciano , Mapeo Cromosómico , Diabetes Mellitus Tipo 2/etnología , Diabetes Mellitus Tipo 2/etiología , Familia , Femenino , Ligamiento Genético , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Grupos de Población/genética , Estadística como Asunto
16.
Metabolism ; 58(10): 1496-502, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19577778

RESUMEN

Several novel genes that are up-regulated in the kidney in diabetes have been identified including GREM1, which encodes gremlin 1. GREM1 maps to human chromosome 15q12, a region previously found to be linked to albumin to creatinine ratio (ACR) in Mexican Americans. The objective of this study is to investigate whether genetic variants in GREM1, a positional candidate gene, contribute to variation in ACR. By sequencing 32 individuals for both exons and 2-kilobase putative promoter region of GREM1, we identified 19 genetic variants including 5 in the promoter region and 13 in the 3' untranslated region. Of 19 polymorphisms identified, 13 polymorphisms were genotyped in the entire cohort (N = 670, 39 large families) either by restriction fragment length polymorphism or by TaqMan (Applied Biosystems, Foster City, CA) assays. Association analyses between the genotypes and ACR, type 2 diabetes mellitus, and related phenotypes were carried out using a measured genotype approach as implemented in the variance component analytical tools (SOLAR). Of the variants examined for association, none exhibited statistically significant association with ACR after accounting for the effects of covariates such as age, sex, diabetes, duration of diabetes, systolic blood pressure, and antihypertensive medications. However, 2 novel variants at the 3' untranslated region showed significant association with estimated glomerular filtration rate (P = .010 and P = .049) and body mass index (P = .013 and P = .019) after accounting for trait-specific covariate influences. Furthermore, a novel variant located in the promoter exhibited a significant association with systolic (P = .038) and diastolic blood pressure (P = .005) after adjusting for the effects of age, sex, diabetes, and antihypertensive medications. In conclusion, the variants examined at GREM1 are not significant contributors to variation in ACR in Mexican Americans, although they appear to minimally influence risk factors related to ACR.


Asunto(s)
Albuminuria/etiología , Albuminuria/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Adulto , Cromosomas Humanos Par 15/genética , Creatinina/sangre , ADN/genética , Exones/genética , Femenino , Genotipo , Hemodinámica/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Desequilibrio de Ligamiento/genética , Masculino , Americanos Mexicanos , Persona de Mediana Edad , Fenotipo , Polimorfismo Genético/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
17.
Kidney Blood Press Res ; 32(3): 200-4, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19546579

RESUMEN

BACKGROUND/AIMS: Genetic polymorphisms in the paraoxonase 2 (PON2) gene are thought to alter its activity and contribute to the development of cardiovascular and renal disease risk. The purpose of this study is to determine whether the Arg148Gly, Cys311Ser and rs12794795 polymorphisms of PON2 examined previously by others, are associated with type 2 diabetes (T2DM), and subclinical measures of cardiovascular and renal disease risk in Mexican Americans. METHODS: Study participants (n = 848; 21 families) were genotyped for the three polymorphisms by TaqMan assay. Association between the genotypic and phenotypic data was performed by measured genotype approach as implemented in the variance component analytical tools. RESULTS: The Arg148Gly variant was found to be monomorphic in our dataset. Of the phenotypes examined for association, the A/C variant located in intron-1 (rs12794795) exhibited statistically significant association only with diastolic blood pressure (p = 0.018) after accounting for the trait-specific covariate effects. The Cys311Ser variant failed to show statistically significant association with any of the phenotypes examined. CONCLUSION: In conclusion, the variants examined at the PON2 locus in Mexican Americans do not appear to be a major contributor to T2DM, cardiovascular or renal disease risk, although they exhibited a small effect on the blood pressure values.


Asunto(s)
Arildialquilfosfatasa/genética , Enfermedades Cardiovasculares/genética , Predisposición Genética a la Enfermedad/genética , Enfermedades Renales/genética , Polimorfismo Genético , Presión Sanguínea/genética , Enfermedades Cardiovasculares/etnología , Diabetes Mellitus Tipo 2/genética , Salud de la Familia , Predisposición Genética a la Enfermedad/etnología , Genotipo , Humanos , Enfermedades Renales/etnología , Americanos Mexicanos/genética , Epidemiología Molecular , Fenotipo
18.
Mol Cell Biochem ; 331(1-2): 201-5, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19468830

RESUMEN

The T-786C, Glu298Asp, and 27 bp variable number of tandem repeats (27 bp-VNTR-a/b) polymorphsims of the endothelial nitric oxide synthase (eNOS) gene are thought to alter nitric oxide production and contribute to the development of vascular and renal disease risk. The objective of this study is to investigate whether these three polymorphisms examined previously by others are associated with cardiovascular and renal disease risk in Mexican Americans. Study participants (N = 848; 21 families) were genotyped for T-786C, Glu298Asp, and 27 bp-VNTR-a/b polymorphisms by PCR followed by restriction digestion. Association analyses were performed by a measured genotype approach implemented in the program SOLAR. Of the phenotypes (type 2 diabetes, hypertension, body mass index, waist circumference, total cholesterol, high density lipoprotein cholesterol, triglycerides, systolic and diastolic blood pressure, albumin to creatinine ratio (ACR), and estimated glomerular filtration rate) examined for association, the 27 bp-VNTR-a/b variant exhibited statistically significant association with ACR (P = 0.047) after accounting for the trait specific covariate effects. In addition, the promoter variant (T-786C) showed a significant association with triglycerides (P = 0.034) after accounting for covariate influences. In conclusion, the present study adds evidence to the role of eNOS candidate gene polymorphisms in modulating the risk factors related to cardiovascular-renal disease in Mexican Americans although the magnitude of the genetic effect is small.


Asunto(s)
Albúminas/metabolismo , Emparejamiento Base/genética , Creatinina/metabolismo , Intrones/genética , Americanos Mexicanos/genética , Repeticiones de Minisatélite/genética , Óxido Nítrico Sintasa de Tipo III/genética , Familia , Femenino , Frecuencia de los Genes , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético
19.
J Clin Endocrinol Metab ; 94(2): 632-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19001525

RESUMEN

BACKGROUND: Elevated serum uric acid is associated with several cardiovascular disease (CVD) risk factors such as hypertension, inflammation, endothelial dysfunction, insulin resistance, dyslipidemia, and obesity. However, the role of uric acid as an independent risk factor for CVD is not yet clear. OBJECTIVE: The aim of the study was to localize quantitative trait loci regulating variation in serum uric acid and also establish the relationship between serum uric acid and other CVD risk factors in Mexican Americans (n = 848; men = 310, women = 538) participating in the San Antonio Family Heart Study. METHODS: Quantitative genetic analysis was conducted using variance components decomposition method, implemented in the software program SOLAR. RESULTS: Mean +/- SD of serum uric acid was 5.35 +/- 1.38 mg/dl. Univariate genetic analysis showed serum uric acid and other CVD risk markers to be significantly heritable (P < 0.005). Bivariate analysis showed significant correlation of serum uric acid with body mass index, waist circumference, waist/hip ratio, total body fat, plasma insulin, serum triglycerides, high-density lipoprotein cholesterol, C-reactive protein, and granulocyte macrophage-colony stimulating factor (P < 0.05). A genome-wide scan for detecting quantitative trait loci regulating serum uric acid variation showed a significant logarithm of odds (LOD) score of 4.72 (empirical LOD score = 4.62; P < 0.00001) on chromosome 3p26. One LOD support interval contains 25 genes, of which an interesting candidate gene is chemokine receptor 2. SUMMARY: There is a significant genetic component in the variation in serum uric acid and evidence of pleiotropy between serum uric acid and other cardiovascular risk factors.


Asunto(s)
Enfermedades Cardiovasculares/genética , Variación Genética , Americanos Mexicanos/genética , Ácido Úrico/sangre , Adulto , Enfermedades Cardiovasculares/sangre , Cromosomas Humanos Par 3 , Femenino , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Escala de Lod , Masculino , Persona de Mediana Edad , Sitios de Carácter Cuantitativo , Factores de Riesgo
20.
Hum Genet ; 124(5): 557-9, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18985387

RESUMEN

The aim of this study is to examine whether the ACE-I/D, AGT-M235T, and AT1R-A1166C polymorphisms of the renin-angiotensin system (RAS) genes are associated with cardiovascular and renal-related risk factors in Mexican Americans. Study participants (N = 848) were genotyped by Taqman assays. Association analyses were performed by measured genotype approach. Of the phenotypes examined, the ACE-I/D, AGT-M235T, and AT1R-A1166C polymorphisms exhibited significant association with systolic blood pressure, glomerular filtration rate and body mass index, respectively. The data suggest that the polymorphisms examined in the RAS may modulate the risk factors associated with cardiovascular-renal disease.


Asunto(s)
Enfermedades Cardiovasculares/genética , Variación Genética , Enfermedades Renales/genética , Americanos Mexicanos/genética , Sistema Renina-Angiotensina/genética , Albuminuria/genética , Alelos , Angiotensinógeno/genética , Diabetes Mellitus Tipo 2/genética , Femenino , Frecuencia de los Genes , Genotipo , Humanos , Hipertensión/genética , Mutación INDEL , Masculino , Peptidil-Dipeptidasa A/genética , Polimorfismo de Nucleótido Simple , Receptor de Angiotensina Tipo 1/genética , Factores de Riesgo , Texas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA